
FM and the π-calculus

Murdoch J. Gabbay, March 18, 2003

Cambridge University, UK,
www.cl.cam.ac.uk/˜mjg1003

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 1

The Issue

The structure of your data should reflect the structure of your program.
So what programs can we write using this structure?

datatype Lam_db = (* lambda-calculus *)
Var of Nat (* x *)

| App of Lam_db*Lam_db (* t1 t2 *)
| Lam of Lam_db (* \x t *)

;

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 2

The Issue

Substitution:

val Sub : Lam_db * Nat * Lam_db -> Lam_db = fn
(* [s/a]t *)

(s,a,Var a) => s
| (s,a,Var b) => Var b
| (s,a,App(t1,t2)) => App(Sub(s,a,t1),Sub(s,a,t2))
| (s,a,Lam t) => Lam(Sub(raise s,a+1,t))

;

A bit messy, perhaps. raise is defined by

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 3

The Issue

val raise : Lam_db -> Lam_db = fn
(Var a) => Var (a+1)

| (App(t1,t2)) => App(raise t1,raise t2)
| (Lam t) => Lam(raise t)

;

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 4

FreshML

We allow declarations of bindable types . A bindable type name has
two associated operations (this is pseudo-code):

bindable_type Name; (* names *)
swap : Name * Name * ’a -> ’a; (* swapping action *)
fresh : unit -> Name; (* fresh name *)

swap takes some (a,b,x) and literally swaps a and b in the

representation of x . fresh just chooses a fresh name (like we can do

with unit ref). So the only difference between FreshML and ML is

this swapping operation. Now watch this. . .

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 5

Abstraction

We can now declare a polymorphic abstraction type-former
’a -> <Name>’a with constructor/destructor

val abs : Name * ’a -> <Name>’a = fn
(a,x) => (a,x);

val conc : <Name>’a * Name -> ’a = fn
((a,x),b) => swap(b,a,x);

(packaged up as an abstract datatype, of course). Write abs(a,x) as

<a>x and conc(x abs,c) as x abs@c.

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 6

Abstraction

We can see that swap(a,b,swap(a,b,x)) is identical to x , so

(<a>x)@b = swap(b,a,x)

(<a>x)@a = x .

We can even pattern-match on abstractions, de-sugaring

<a>x => f(a,x) as

x hat => let a=fresh() in f(a,x hat@a)

—in effect we guarantee that when we decompose abstractions ‘names
of bound variables are chosen fresh ’.

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 7

Semantics: NOM

Fix some countably infinite set of atoms a, b, c, . . . ∈ A. Let a

swapping be a function (a b) : A → A defined by

(1)

(b a)a def= b

(b a)b def= a

(b a)n def= n n 6= a, b.

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 8

Semantics: NOM

Let π, π′, κ ∈ PA be the set of finite permutations of atoms , thus

the subset of AA inductively generated by the swappings (a b) and Id
the identity on A. This is a group with unit Id under functional

composition ◦.

Let the category of Nominal Sets have objects sets with PA action—

(2) ∀π, π′, x. π · (π′ · x) = π ◦ π′ · x and Id · x = x

the standard rules for a permutation action. Clearly A is the semantics

for Nameand (a b) the semantics for fn x => swap(a,b,x) .

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 9

Semantics: NOM

What makes this work is finite support

(3) ∀x ∈ X. Na, b. (a b) · x = x.

Write AS for the set of finite sets of atoms. Write Na. Φ(a) for

∃S ∈ AS . ∀a 6∈ S. Φ(a). Then (3) above means

(4) ∀x ∈ X. ∃S ∈ AS . ∀a, b 6∈ S. (a b) · x = x.

This reflects in the semantics that anything we can build in FreshML ,

being a finite program, will only mention finitely many names, so we

have a notion of ‘fresh name’, referring to one of the infinitely many

which we have not used yet (and it doesn’t matter which because if we

want to change the name, we can use swap to do so).

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 10

Semantics: abstraction

The semantics of <Name>Xis, for those interested,

(XA)/∼ where f∼g
def⇔ Nc. fc = gc

(A×X)/∼ where 〈a, x〉∼〈b, y〉 def⇔ Nc. (c a)x = (c b)y;

equivalent definitions, where maps either way are given by what we

would expect from <Name>X, namely

f 7→ Na. 〈a, fa〉
〈a, x〉 7→ λb.(b a)x

(where ∼ takes equivalences over the choice of a in both maps).

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 11

The π-calculus

The π-calculus is full of binding, both at the level of terms and also

transitions. In a series of programs pi-ltsb-1 to pi-ltsb-4 I

explore (increasingly smart) ways of using FreshML to program terms

and transitions for this calculus. We consider pi-ltsb-3 here. The

datatypes are:

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 12

pi-ltsb-3

bindable_type Name (* bound names *)
;
datatype Proc = (* pi-calculus processes *)

Par of Proc*Proc (* (P | P’) *)
| Res of <Name>Proc (* nu x (P) *)
| Rep of Proc (* !(P) *)
| Out of Name*Name*Proc (* out x y.(P) *)
| In of Name*(<Name>Proc) (* in x(y).(P) *)
| Tau of Proc (* tau.(P) *)
| Ina (* 0 *)

;
datatype Act =

Actt
| Acto of Name*Name
| Acti of Name*Name

;
type Trn = <Name>(Act*Proc) (* results of a transition step *)
;

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 13

pi-ltsb-3

The three prototypical transitions are these:

(Out(a,b,P), <n>(Acto(a,b), P)) : Proc* Trn
(In(a,P), (Acti(a,b), P)) : Proc* Trn
(Res(Out(a,b,P)), (Acto(a,b), P)) : Proc* Trn

This transition system is ‘deterministic’ in the sense that it never makes

any arbitrary choices about fresh names, because there aren’t any (e.g.

b is bound in the third transition above). I call this property

name-regularity and can make it mathematically precise as a property

of a relation R ⊆ X × Y .

The code which generates the transitions is. . .

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 14

pi-ltsb-3

val rec trns_of : Proc -> (Trn list) =
fn Ina => []

| (Tau(P)) => [promoteAbs (Actt,P)]
| (Out(a,b,P)) => [promoteAbs (Acto(a,b),P)]
| (In(a,<n>P)) => [<n>(Acti(a,n),P)]

...
| (Res(<n>P)) => open_rule n (trns_of P)

...;
val open_rule_helper : Name -> Trn -> Trn option =

fn n => fn <m>(Acto(a,b),Q) =>
if b#n then None else

Some ((Acto(a,b) , Q))
| _ => None;

(Open)
P

νm.ab→ P ′

ν[b]P νb.ab→ P ′

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 15

pi-ltsb-3

val comm_close_1_rule_helper :
<Name>((Act*Proc)*(Act*Proc)) -> (Trn option) =
fn <c>((Acto(a1,b1),Q1),(Acti(a2,b2),Q2)) =>

if a1=a2 then (
if b1#c then

Some (<c>(Actt,Par(Q1,rename(<b2>Q2,b1))))
else

Some (<b1>(Actt,Res(<b1>(Par(Q1,rename(<b2>Q2,b1))))))
) else None

| _ => None;

P1
νc.ab1→ Q1 P2

νb2.ab2→ Q2

P1 | P2
νc.τ→ Q1 | Q2{b1/b2}

(Com1)

P1
νb.ab→ Q1 P2

νb.ab→ Q2

P1 | P2
νb.τ→ ν[b](Q1 | Q2)

(Close1)

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 16

pi-ltsb-4

Now a little bit of faffing around; what is pi-ltsb-4 ?

datatype Proc = (* pi-calculus processes *)
Par of Proc*Proc (* (P | P’) *)

| Rep of (Proc NM) (* !(nu as P) *)
| Out of Name*Name*Proc (* out x y.(P) *)
| In of Name*(<Name>Proc) (* in x(y).(P) *)
| Tau of Proc (* tau.(P) *)
| Ina (* 0 *)

;
type ProcNM = Proc NM
;

NMis the abstraction monad . ’a NM is in essence

<Name list>’a , or if you prefer [A-List]α.

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 17

pi-ltsb-4

(* Monad lifting function: abs >> f applies f to the abstracted value
in abs and adds abs’s abstractions to the result. *)
infix >>;
val op>> : ’b NM * (’b -> ’c NM) -> ’c NM = fn

(<l>x, f) => <l>(f x);

datatype Act =
Actt

| Acto of Name*Name
| Acti of Name*Name

;
type Trn = <Name>(Act*ProcNM) (* results of a transition step *)
;

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 18

pi-ltsb-4

For convenience I allow myself non-linear patterns (repeats of a and l
in parttern below):

val comm_close_1_rule_helper :
<Name>((Act*ProcNM)*(Act*ProcNM)) -> Trn option =
fn <c>((Acto(a,b1),<l>q1) , (Acti(a,b2),<l>q2)) =>

Some <c>(Actt , <c::l> Par(q1 , rename(<b2>q2,b1)))
| _ => None;

(Com/Close1)
P1

νc.ab1→ [l]Q1 P2
νb2.ab2→ [l]Q2

P1 | P2
νc.τ→ [c :: l](Q1 | Q2{b1/b2})

Of course the idea is that this is, once you get used to it, ‘simpler’. I

came to Lyon amongst other things to discuss with Daniel how to use a

similar trick to build models of π-calculus processes à la HD-automata

(Montanari et al) or πθ-automata (Honsell et al).

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 19

Conclusions

So yes, we can use FreshML to (simply?!) program the binding of the

π-calculus.

FM and the π-calculus, March 18, 2003, www.cl.cam.ac.uk/˜mjg1003 20

