
FreshML: programming with binders made

easy

Murdoch J. Gabbay, 1 June 2003

Cambridge University, UK,
www.cl.cam.ac.uk/˜mjg1003

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 1

FreshML

FreshML is a programming language which extends ML with constructs

to facilitate metaprogramming on syntax.

FreshML emerges from FM techniques, presented in my thesis in

2001, based on an original idea of Andrew Pitts’: “what if names are

concrete object-level atoms”. Thus natural numbers n ∈ N do not

qualify, because they are not ‘atomic enough’. unit ref does, and we

shall return to that.

We realised this idea mathematically as “FM set theory”, and along

with Peter White and Mark Shinwell implemented a programming

language with intended semantics in FM.

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 2

FreshML

The first version of FreshML [metpbn] matched its design criteria but

was unwieldy to program in. We have since improved it tremendously in

this respect, and developed FreshML-Lite, described in [frepbm], a

paper by the same name as this talk.

I shall talk about FreshML-Lite, but I shall call it FreshML. The language

is in a state of flux as improvements are identified and incorprated into

the language. Code you see here may not parse tomorrow, it might not

even parse as I write.

FreshML may be obtained from www.freshml.org . Good for fast

prototyping, implementation, theory, and sheer fun.

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 3

Overview of FreshML

FreshML allows you to declare Bindable Types:

bindable_type name;

Consistent with the original FM idea, elements of bindable type have
no internal structure. They are very similar to elements of unit ref ;
we can generate them dynamically and test them for equality:

val a = let fresh a:name in a;
val b = let fresh b:name in b;
a=a; true.
a=b; false.

returns true , then false , as indicated.

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 4

Swapping

Given any type ty and exp:ty , we can swap names a:name and
b:name in exp :

swap a,b in a; b.
swap b,a in a=a; true.
val c = let fresh c:name in c;
swap c,a in

(fn x:name => if x=a then <b,c>
else <c,a>);

fn x:name => if x=b then <b,a>
else <a,c>.

We can swap polymorphically over all types, even function types, as

shown. This is how FreshML differs from ML using unit ref , where

f:ty1=>ty2 has no intensional properties.

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 5

Binding

Given a type ty we can form <Names>ty , “bind Names in ty ”.

The type-former is

n:names , exp:ty 7−→ <n>exp:<Names>ty .

So think of <n>exp as the pair (n,exp) .

The type-destructor, in pattern-matching style, is

let ty abs = <n’>exp’ in exp’’ ,

where n’ and exp’ are bound.

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 6

Binding

Operationally let <n>exp = <n’>exp’ in exp’’ evolves as

follows: a fresh n’ is generated, and swap n,n’ in exp’’

evaluated.

For example,

let <a>a = <n’>m’ in n’;
n.

let <a>b = <n’>m’ in m’;
b.

where two n are generated fresh, one for each expression (but only one

escapes into the environment).

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 7

Binding

In the underlying representation <a>exp is just (a,exp) , but it

behaves like “exp with a bound” because whenever we destruct the

expression, a comes out freshened to n.

Implementors: in the dynamics the swapping is left ‘delayed’ on top of

exp . If we ever try going into the structure of exp , the swapping is lazily

pushed down. So this is a relatively cheap operation. Of course there’s

plenty of room for optimisations, especially when we unpack stacks of

abstractions, work on the underlying exp , then repackage. Abstraction

by non-atomic types is a recent development to help with this. See

[frepbm].

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 8

Binding

Informal correctness theorem: expressions of type <Name>ty up to
contextual equivalence are in bijection with expressions of type ty , with
an atom bound. For example

<a>a = b
<a>b = <c>b
<a>(fn x:name => if x=b then <b,a>

else <a,c>)
=
<q>(fn x:name => if x=b then <b,q>

else <q,c>)

Thus a little magic takes place in FreshML: names a,b,c behave like

constants (which we can generate at will with fresh —unlike variable

symbols x,y,z which are fixed in the program), and yet thanks to

swapping we can still bind them.

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 9

Quick prototyping: λ-calculus in one slide

bindable_type Name (* names *)
;
datatype Lambda = (* Lambda-terms *)

Var of Name (* a *)
| App of Lambda*Lambda (* t1 t2 *)
| Lam of <Name>Lambda (* lam a t *)

;

val rec subst : Name*Lambda*Lambda -> Lambda =
fn (n,Var x,s) =>

if n=x then Var x else s
| (n,App t1 t2,s) =>

subst(n,t1,s) subst(n,t2,s)
| (n,Lam <a>t,s) =>

Lam <a>(subst(n,t,s))
;

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 10

Quick prototyping: λ-calculus in one slide (slide II)

. . . then we can implement whatever reduction strategy we prefer:

val rec cbv : Lambda -> Lambda =
fn (App t1 t2) =>

let val t1’ = cbv t1;
val t2’ = cbv t2;

in match t1’ with Lam(<n>t1’’) => subst(n,t1’’,t2’)
| t1’ => App t1’ t2’

| t => t
;

val rec cbn : Lambda -> Lambda =
fn (App t1 t2) =>

let val t1’ = cbn t1;
in match t1’ with Lam(<n>t1’’) => subst(n,t1’’,t2)

| t1’ => App t1’ t2
| t => t

;

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 11

Features of FreshML

1. Explicit bindable types of names.

2. Explicit names, which behave like constants.

3. Swapping.

4. Name-abstraction <Name>ty . This specifies binding in the

datatype declaration, as Lamabove.

5. (Freshening) pattern-matching on name-abstractions.

Correctness theorem: Expressions of Lam in FreshML up to contextual

equivalence are in bijection with λ-calculus terms up α-equivalence.

This proved formally in [frepbm], and we can easily see from the proof

how to extend it to more general datatypes. I will talk on Friday about

what was, a year ago, a novel application to the π-calculus. I conclude

this talk with an extended example in more traditional vein:

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 12

Extended example (from [frepbm])

Represent expressions of a small fragment of ML with the following
forms:

fn x => e function abstraction

e1 e2 function application

let val x = e1 in e2 end local value

let fun f x = e1 in e2 end local recursive function

as follows:

bindable type name
datatype expr = Vid of name

| Fn of < name>expr
| App of expr * expr
| Let of expr * < name>expr
| Letfun of

<name>((< name>expr) * expr)

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 13

Extended example

fun subst x e (Vid y) =
if x # y then Vid y else e

| subst x e (Fn (< y >e1)) =
Fn (< y >(subst x e e1))

| subst x e (App (e1 , e2)) =
App (subst x e e1 , subst x e e2)

| subst x e (Let (e1 ,< y >e2)) =
Let (subst x e e1 ,< y >(subst x e e2))

| subst x e (Letfun (< f >(<y>e1 , e2))) =
Letfun (< f >(< y >(subst x e e1), subst x e e2))

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 14

Extended example

1 fun remove (< x >[]) = []
2 | remove (< x >(y :: ys)) =
3 if x # y then y ::(remove (< x >ys))
4 else remove (< x >ys);
5 fun fv (Var x) = [x]
6 | fv (Lam(< x >t)) = remove (< x >(fv t))
7 | fv (App(t1,t2)) = (fv t1)@(fv t2);
8 fun is closed t = ((fv t)=[])

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 15

Meta-theorem

Swapping (a b) commutes with first-order logic:

Φ((a b) · x1, . . . , (a b) · xn) ⇐⇒ Φ(x1, . . . , xn).

This is Equivariance of FM set theory. For example,

(a b) · x = (a b) · y ⇐⇒ x = y, because (a b) is bijective on

names.

Suppose you have some program exp which satisfies Φ(exp). Then

so does (a b) · exp.

Corollary: FreshML correctness theorem.

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 16

Final slide

This area of research is really flourishing at the moment. Download

FreshML from www.freshml.org . Apologies though: FreshML is

evolving so rapidly that at the time of writing at least, the documentation

is out-of-date.

See my talk on Friday for more FM (recounted in a more theoretical

dialect).

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 17

Features of FreshML (again)

1. Explicit bindable types of names.

2. Explicit names, which behave like constants.

3. Swapping.

4. Name-abstraction <Name>ty . This specifies binding in the

datatype declaration, as Lamand expr above.

5. (Freshening) pattern-matching on name-abstractions.

FreshML: programming with binders made easy, 1 June 2003, www.cl.cam.ac.uk/˜mjg1003 18

