
FM binding for π-calculus transitions

Murdoch J. Gabbay, June 1, 2003

Cambridge University, UK,
www.cl.cam.ac.uk/˜mjg1003

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 1

The Issue

Metaprogramming is programming on syntax. Metaprogramming is:

• Implement a λ-calculus.

• Implement a π-calculus.

• Prove bisimilarity/correctness/Church-Rosser on the λ-calculus.

• Prove bisimilarity/correctness or build models of a π-calculus.

• More than I know. . .

FM techniques are an approach to metaprogramming via a new model

of syntax.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 2

The Issue

Standard model of syntax uses parse trees. Syntax has variable

symbols and binding.

We seek an intuitive mathematical model of binding (and via parse trees

metaprogramming) in which variable symbols are first-class objects at

meta-level.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 3

Mathematical specification of problem

Intuitive7→some category which looks like the category of sets. There

should be a set A with a, b, c, . . . ∈ A representing object-level

variable symbols.

Binding: Given any set T there should be a set [A]T with arrow

(1)
A× T →[A]T

〈a, t〉 7→[a]t

[a]t is like the a.t in λa. t. The above arrow tells us “think of it as

〈a, t〉”, which we often do in practice of course.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 4

Mathematical specification of problem

Unbinding: Given a set T there should be an arrow

(2)
([A]T)× A →T

〈t̂, a〉 7→t̂@a

So given an abstraction t̂ we can concrete it to a body t̂@a. This tells

us we can “choose a name for the bound variable name in an

abstraction”.

Also, we require ([a]t)@a = t. We shall soon see what ([a]t)@b
should be.

Some of you may think “but we can program that up for given T ”. Maybe

(depends on T ; function type?)—but if we can axiomatise it

intensionally (over a whole category), this is roughly equivalent to

delegating binding to the compiler, so we do not have to program it up

for every given T . That is in a nutshell the story of FreshML.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 5

Overview of FreshML

FreshML allows you to declare Bindable Types:

bindable_type name;

This is like A. Elements are much like unit ref ; we can generate
them dynamically and test them for equality:

val a = let fresh a:name in a;
val b = let fresh b:name in b;
a=a; true.
a=b; false.

returns true , then false , as indicated.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 6

Binding

Given a type ty we can form <Names>ty , “bind Names in ty ”. This is

[A]T . The type-former is

n:names , exp:ty 7−→ <n>exp:<Names>ty .

The type-destructor—in pattern-matching style—is

let ty abs = <n’>exp’ in exp’’ .

See (1) and (2). We find we are only interested in opening up an

abstraction at fresh n’ . The FreshML interpreter generates n’ fresh

and evaluates ty abs @n’ (whatever that means). FreshML is stateful

and keeps a counter of the last generated fresh name, to guarantee this.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 7

Swapping

Given any type ty and exp:ty , we can swap names a:name and
b:name in exp :

swap a,b in a; b.
swap b,a in a=a; true.
val c = let fresh c:name in c;
swap c,a in

(fn x:name => if x=a then <b,c>
else <c,a>);

fn x:name => if x=b then <b,a>
else <a,c>.

We can swap polymorphically over all types, even function types, as

shown.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 8

Swapping

FreshML thus differs from ML with unit ref , where f:ty1=>ty2

has no intensional properties. We shall soon develop the mathematical

model and show that we can axiomatise swapping abstractly as an

intensional property of sets, which is why we dare make it polymorphic

over all types in the programming language.

Operationally let <n>exp = <n’>exp’ in exp’’ evolves as

follows: a fresh n’ is generated, and swap n,n’ in exp’’

evaluated.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 9

Semantics: NOM

Fix some countably infinite set of atoms a, b, c, . . . ∈ A. Let a

swapping be a function (a b) : A → A defined by

(3)

(b a)a def= b

(b a)b def= a

(b a)n def= n n 6= a, b.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 10

Semantics: NOM

Let π, π′, κ ∈ PA be the set of finite permutations of atoms , the

subgroup of AA generated by (a b) under functional composition ◦.

The unit Id is λa.a the identity on A.

Let the category of Nominal Sets have objects sets with PA
action—e.g.

(4) ∀π, π′, x. π · (π′ · x) = π ◦ π′ · x.Id · x = x

(a b) the semantics for fn x => swap(a,b,x) .

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 11

Semantics: NOM

Objects have finite support

(5) ∀x ∈ X. Na, b. (a b) · x = x.

Write Pfi(A) for the set of finite sets of atoms. Write Na. Φ(a) for

∃S ∈ Pfi(A). ∀a 6∈ S. Φ(a). Then (5) above means

(6) ∀x ∈ X. ∃S ∈ Pfi(A). ∀a, b 6∈ S. (a b) · x = x.

In fact there is a minimal support S(x) ∈ Pfi(A) such that

(7) a, b 6∈ S(x) =⇒ (a b) · x = x.

Write a#x when a 6∈ S(x).

This reflects the FreshML state: a program will only mention finitely

many names, so we have a notion of ‘fresh name’, referring to one of the

infinitely many which we have not used yet (and it doesn’t matter which

because if we want to change the name, we can use swap to do so).

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 12

Semantics: abstraction

The semantics of <Name>ty is

(XA)/∼ where f∼g
def⇔ Nc. fc = gc

(A×X)/∼ where 〈a, x〉∼〈b, y〉 def⇔ Nc. (c a)x = (c b)y;

equivalent definitions, where maps either way are given by what we

would expect from <Name>X, namely

f 7→ Na. 〈a, fa〉
〈a, x〉 7→ λb.(b a)x

(where ∼ takes equivalences over the choice of a in both maps). This

duality between pairs and functions gives us (1) and (2).

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 13

The π-calculus

The π-calculus is full of binding, both at the level of terms and also

transitions. In a series of programs pi-ltsb-1 to pi-ltsb-4 I

explore (increasingly smart) ways of using FreshML to program terms

and transitions for this calculus. We consider pi-ltsb-3 here. The

datatypes are:

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 14

pi-ltsb-3

bindable_type Name (* bound names *)
;
datatype Proc = (* pi-calculus processes *)

Par of Proc*Proc (* (P | P’) *)
| Res of <Name>Proc (* nu x (P) *)
| Rep of Proc (* !(P) *)
| Out of Name*Name*Proc (* out x y.(P) *)
| In of Name*(<Name>Proc) (* in x(y).(P) *)
| Tau of Proc (* tau.(P) *)
| Ina (* 0 *)

;
datatype Act =

Actt
| Acto of Name*Name
| Acti of Name*Name

;
type Trn = <Name>(Act*Proc) (* results of a transition step *)
;

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 15

Ontology

I propose two ontological commitments in this slide. First, in Proc by

use of <Name>Proc I propose the use of FM abstraction to model

binding. In mathematical notation, [a]P ∈ [A]Π models b.P in, say,

a[b]P .

Second, in Tran=<Name>(Act*Proc) I propose to model

π-calculus transitions by Π× [A](Act×Π). The slogan is:

“Model freshly-generated names by binding.”

I proposed this in [thempc] for the π-calculus. It has since been used

also in the FreshML denotational semantics, see [frepbm], with great

success.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 16

pi-ltsb-3

Call a transition system R ⊆ X × Y name-regular when

∀xRy. a#x ⇒ a#y. The declaration of Tran makes it a

name-regular transition system. Transitions

(8)

abP
ab→ P

a[b]P ab→ P

ν[b]abP
ab→ P

are modelled by elements

(Out(a,b,P), <n> (Acto(a,b), P)) : Proc* Trn
(In(a,P), (Acti(a,b), P)) : Proc* Trn
(Res(Out(a,b,P)), (Acto(a,b), P)) : Proc* Trn

The code which generates the transitions is. . .

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 17

pi-ltsb-3

val rec trns_of : Proc -> (Trn list) =
fn Ina => []

| (Tau(P)) => [promoteAbs (Actt,P)]
| (Out(a,b,P)) => [promoteAbs (Acto(a,b),P)]
| (In(a,<n>P)) => [<n>(Acti(a,n),P)]

...
| (Res(<n>P)) => open_rule n (trns_of P)

...;
val open_rule_helper : Name -> Trn -> Trn option =

fn n => fn <m>(Acto(a,b),Q) =>
if b#n then None else

Some ((Acto(a,b) , Q))
| _ => None;

(Open)
P

νm.ab→ P ′

ν[b]P νb.ab→ P ′

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 18

pi-ltsb-3

val comm_close_1_rule_helper :
<Name>((Act*Proc)*(Act*Proc)) -> (Trn option) =
fn <c>((Acto(a1,b1),Q1),(Acti(a2,b2),Q2)) =>

if a1=a2 then (
if b1#c then

Some (<c>(Actt,Par(Q1,rename(<b2>Q2,b1))))
else

Some (<b1>(Actt,Res(<b1>(Par(Q1,rename(<b2>Q2,b1))))))
) else None

| _ => None;

P1
νc.ab1→ Q1 P2

νb2.ab2→ Q2

P1 | P2
νc.τ→ Q1 | Q2{b1/b2}

(Com1)

P1
νb.ab→ Q1 P2

νb.ab→ Q2

P1 | P2
νb.τ→ ν[b](Q1 | Q2)

(Close1)

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 19

pi-ltsb-4

I suggest FM abstraction and name-regular transition systems are an

efficient and natural way of programming your process calculi.

I could examine pi-ltsb-3 in more detail, but instead (have I got time
left?); I indulge myself with some faffing around. What is pi-ltsb-4 ?

datatype Proc = (* pi-calculus processes *)
Par of Proc*Proc (* (P | P’) *)

| Rep of (Proc NM) (* !(nu as P) *)
| Out of Name*Name*Proc (* out x y.(P) *)
| In of Name*(<Name>Proc) (* in x(y).(P) *)
| Tau of Proc (* tau.(P) *)
| Ina (* 0 *)

;
type ProcNM = Proc NM
;

NMis the abstraction monad . ’a NM is in essence

<Name list>’a , or if you prefer [A-List]α.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 20

pi-ltsb-4

(* Monad lifting function: abs >> f applies f to the abstracted value
in abs and adds abs’s abstractions to the result. *)
infix >>;
val op>> : ’b NM * (’b -> ’c NM) -> ’c NM = fn

(<l>x, f) => <l>(f x);

datatype Act =
Actt

| Acto of Name*Name
| Acti of Name*Name

;
type Trn = <Name>(Act*ProcNM) (* results of a transition step *)
;

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 21

pi-ltsb-4

For convenience I allow myself non-linear patterns (repeats of a and l
in pattern below):

val comm_close_1_rule_helper :
<Name>((Act*ProcNM)*(Act*ProcNM)) -> Trn option =
fn <c>((Acto(a,b1),<l>q1) , (Acti(a,b2),<l>q2)) =>

Some <c>(Actt , <c::l> Par(q1 , rename(<b2>q2,b1)))
| _ => None;

(Com/Close1)
P1

νc.ab1→ [l]Q1 P2
νb2.ab2→ [l]Q2

P1 | P2
νc.τ→ [c :: l](Q1 | Q2{b1/b2})

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 22

Conclusions

Slogans are:

• Use the FM model of binding to specify syntax-up-to-binding.

• Use FreshML to program on it.

• Use FM binding to model generation of fresh names in transition

systems.

• Use the abstraction monad to model restriction, in maths and

programming.

I should write that up as a paper, shouldn’t I? I have; in [thempc] and

[thempc-3]. However FM techniques are better-understood and there is

scope to re-state this case.

FM binding for π-calculus transitions, June 1, 2003, www.cl.cam.ac.uk/˜mjg1003 23

