
FM Techniques for Syntax-with-Binding

Murdoch J. Gabbay, October 2002

Revised October 28, 2002.

FM Techniques for Syntax-with-Binding, Oct 2002 1

Introduction

I will talk about names and binding . We are all familiar with both of

these things, but familiarity is not understanding. I will outline� what FM is,� what problems it was created to solve,� some of its simpler applications.

It always takes a long time to understand a genuinely new idea. 45

minutes is not long. Whatever (positive) impression you may form ofFM, in actuality it’s ten times neater.

FM Techniques for Syntax-with-Binding, Oct 2002 2

What are FM and FMG� “FM sets” stands for “Fraenkel-Mostowski set theory”. Presented in

[GabbayMJ:thesis], [GabbayMJ:newaas], [GabbayMJ:newaas-jv].� FM has become an overall label for logics and programming

languages developed using FM sets (or Schanuel Topos, etc).

Thus for example FreshML, Pitts’ Nominal Sets, Nominal Unification.� FMG stands for Fraenkel-Mostowski Generalised. Primitive version

presented in [GabbayMJ:hotn], full version in [GabbayMJ:picfm]

(pending publication) with more to follow.� FMG is a Higher-Order Logic (HOL) and can be thought of as a

HOL version of FM sets. However, it is also strictly more powerful.

FM Techniques for Syntax-with-Binding, Oct 2002 3

Substitution as computation

The syntax of a simple �-calculus:

(1) t:: = x 2 A j t t j �x:t j 0 j Su(t) j t+ t:

Evaluation rules:

x + x �x:t + �x:tt1 + �x:s t2 + V s[V=x℄ +Wt1t2 + W : : :
Thus we see that substitution models computation. Do we have a good

definition of substitution?

FM Techniques for Syntax-with-Binding, Oct 2002 4

Capture-avoiding substitution (not rigorous!)

(2)

[s=x℄x def= s[s=x℄y def= y[s=x℄(t1 t2) def= [s=x℄t1 [s=x℄t2[s=x℄�x:t def= �x:t[s=x℄�y:t def= �y0:[s=x℄[y0=y℄t for y0 fresh:

Last clause: substitution capture-avoiding. Thus for t = x and s = y,[y=x℄�y:x 6= �y:y but [y=x℄�y:x = �y0:y
for some/any fresh y0. What does ‘fresh’ mean? Not rigorous

mathematical specification, and cannot be programmed.FM Techniques for Syntax-with-Binding, Oct 2002 5

Problem appears elsewhere

Similar phenomenon for, say, inlining optimiser:

let y=5 in
let x=f(y) in

let y=7 in <x,x,y>

rewrites to

let y=5 in
let y’=7 in <f(y),f(y),y’>

Note here how we rename y to y0 in the inner binding, so as not to

accidentally capture it.

FM Techniques for Syntax-with-Binding, Oct 2002 6

Example 6= the �-calculus: 1/2

Proving weakening for some type system:

(3) 8�; t; T; y;X:� ` t : T ^ y 62 Dom(�)=) �; y : Y ` t : T:

This says:

If we know � ` t : T
then for (fresh!) y, we know �; y : Y ` t : T:

FM Techniques for Syntax-with-Binding, Oct 2002 7

Example 6= the �-calculus: 2/2

An inductive proof on ` interacts badly with a rule such as�; x :X ` t : T� ` �x :X:t :X ! T x 62 Dom(�)

because we can weaken the conclusion with x but not the assumption.

Thus in an inductive proof with simple inductive hypothesis, we assume

hyp. of �; x :X ` t : T and with rule above we obtain

If we know � ` �x :X:t :X ! T
then for fresh y 6= x, we know �; y : Y ` �x :X:t :X ! T:

But we need also y = x to obtain hyp. Bummer. OK so it’s simple, but

it’s in a sense characteristic and it’s not to do with binding on the right of

the sequent.FM Techniques for Syntax-with-Binding, Oct 2002 8

First application of FM: equivariance 1/3

We have atoms A . For any permutation � of A we can apply � to a

term t, predicate P , function f , . . . Thus � � t, � � P , � � f , . . . This

satisfies equivariance:

(Equiv) � � F (x1; : : : ; xn) = F (� � x1; : : : ; � � xn):

For predicates this becomes

(Equiv) P (x1; : : : ; xn) () P (� � x1; : : : ; � � xn)

(because � � > = > and � � ? = ?).

Now consider

(4) �(�; t; T; y; Y) def= � ` t : T =) �; y : Y ` t : T:

FM Techniques for Syntax-with-Binding, Oct 2002 9

First application of FM: equivariance 2/3

�(�; t; T; y; Y) def= � ` t : T =) �; y : Y ` t : T:

Suppose we know8y; Y: y 62 Dom(�) ^ y 6= x =) �((�; x :X); t; T)

and suppose y 62 Dom(�). We want to conclude�(�; �x :X:t; T; y; Y):
Problem: the side condition excludes the case y = x. So supposey = x, what do we do?

For some other z 6= x, �(�; �x :X:t; T; z; Y).

FM Techniques for Syntax-with-Binding, Oct 2002 10

First application of FM: equivariance 3/3

Now apply equivariance:�(�; �x:X:t; T; z; Y) () �(���; ��(�x:X:t); ��T; ��z; ��Y)

for � = (z x) the transposition of z and x.� (z x) � � = � since x; z 62 Dom(�).� (z x) � �x :X:t =� �x :X:t since x; z 62 FV (�x :X:t)

(remarkable property of permutations).� (z x) � T = T because types are not dependent (suppose).

Similarly for Y .� (z x) � z = x.

We deduce �(�; �x :X:t; T; x; Y) as required.FM Techniques for Syntax-with-Binding, Oct 2002 11

Remarkable property of permutation

For some (sorry!) �-calclulus,z; x 62 FV (s) =) s =� (z x) � s:

For example:

(5)

�f:�x:f(x) =� �x:�f:x(f) compare:�f:�x:f(x) 6=� �f:�f:f(f) [f=x℄:

This kind of reasoning turns up in nature. Last Tuesday, before coming

to France, I spoke to two researchers about using transposition to

rename variable names in results to get round awkwardnesses to do

with x 62 FV (t). They independently—from each other and from

myself—identified transposition as the lemma they needed.

FM Techniques for Syntax-with-Binding, Oct 2002 12

It gets better

Weakening for some type system, revised:

(6) 8�; t; T;X: Ny: � ` t : T =) �; y : Y ` t : T:

With rule 8�: Nx: 8t; T: �; x :X ` t : T� ` �x :X:t :X ! T :

This avoids using permutation at all.

FM Techniques for Syntax-with-Binding, Oct 2002 13

NQuantifier

The N(‘new’) quantifier in FM is defined by:Na: P (a) def= 9L 2 Pofin(A): 8a 2 L: P (a):

Here Pofin(A) is the set of cofinite sets of atoms. L is cofinite whenA n L is finite.

From properties of finite and cofinite sets it follows

(7) Na: P (a) ^ Na: Q(a) () Na: (P (a) ^ Q(a)):

Consider for example P (a) = a 2 FV (s) and Q(a) = a 2 FV (t)

for s; t in some datatype of terms. Note how semantics gives rise to a

new entity Nin a new logic.

FM Techniques for Syntax-with-Binding, Oct 2002 14

Nand Negation

Theorem 1: Every X � A is either finite or cofinite:P(A) = Pfin(A) + Pofin(A):

Counter-intuitive: “what happened to the rest of the powerset then?”. It

does not exist in the FM universe, though of course it exists in a model

of FM inside another, traditional, universe.

This ensures thatNa: P (a)) Na: Q(a) () Na: (P (a)) Q(a))(8) Na: :P (a) () : Na: P (a):(9)

FM Techniques for Syntax-with-Binding, Oct 2002 15

Another example: =� 1/2

We now apply this to give an improved definition of �-equivalence =�

for a datatype of �-terms� def= A +�� �+ A � �:=� is given by

(10)

x =� y , x = ys1 s2 =� t1 t2 , s1 =� t1 ^ s2 =� t2�x:s =� �y:t , Nz: (z x) � s =� (z y) � t:

FM Techniques for Syntax-with-Binding, Oct 2002 16

Another example: =� 2/2

The proof of even a simple property, e.g. transitivity of =�, is now

(inductive and the interesting clause is)� Nn: (n a) � s =� (n b) � t�^� Nn: (n b) � t =� (n) � u�() � Nn: (n a) � s =� (n b) � t =� (n) � u�;

whereas without Nwe must use something like

“n1 62 FV (s) [FV (t)” and “n2 62 FV (t) [FV (u)”, and then use

equivariance to rename n1 and n2 to some common n fresh for s, t,
and u.

FM Techniques for Syntax-with-Binding, Oct 2002 17

Abstraction types

Finally, we can get rid of =� entirely (if we want to).�� def= A +�� � �� + [A ℄�� :[A ℄� is an FM abstraction type. Elements of [A ℄T are like elements ofT with a distinguished bound atom. Thus �� is isomorphic to �= =�

but is also inductive. The FreshML type system accommodates

abstraction types.

FM Techniques for Syntax-with-Binding, Oct 2002 18

Capture-avoiding substiution (rigorous)

Capture-avoiding substitution (in for example FreshML) becomes:

sub s a var(a) => s
sub s a var(b) => b
sub s a app(t1,t2)

=> app(sub s a t1,sub s a t2)
sub s a lam(<n>t)

=> lam(<n>(sub s a t))

But what is the type system of such a language; we must ensure the

fresh choice of n does not escape its scope. What about the interaction

with state? This is the FreshML project.FM offers a semantics for binding which illuminates the phenomenon it

models. It guides us to type systems, logics, and other formal

environments, with facilities such as the three listed in Slide 20.FM Techniques for Syntax-with-Binding, Oct 2002 19

We need:

We require support for:� “Choose a fresh atom” (N).� “Call the bound atom n” (‘in �n:t’).� “Bind n in t” (‘form �n:t from t’).
This allows us to, for example, give semantics to a program such as

case x’ of <n>x => <n>f(x)

This is the capture-avoiding application of f under the binder: n is

chosen fresh, f applied to the body, then n is rebound. The FM

semantics allows us to develop a type system to prevent n
inappropriately escaping the scope of such a pattern-matching, for

example in

case x’ of <n>x => nFM Techniques for Syntax-with-Binding, Oct 2002 20

Not just �-calculus

We have used the �-calculus as a running example. Do not leave with

the impression that this talk is about the �-calculus. Far from it. In my

most recent paper (with the referees) I apply sophisticated versions of

these techniques to analyse the syntax and semantics of the �-calculus,

a process calculus for modelling distributed, communicating systems

which generate fresh tokens during computation.

We can analyse syntax and semantics because the semantics of the�-calculus is syntax-based, and can suffer very badly from problems

caused by binding. The semantics in question are designed for

model-checking and verification (e.g. of bisimulations).

In my paper I claim to have brought order to the confusion, and to have

opened the door to using FM languages to code novel and effective

algorithms on the models I build.FM Techniques for Syntax-with-Binding, Oct 2002 21

Names (and binding) are everywhere� Syntax and operational semantics (e.g. �-calculus, PCF,��-calculus, �-calculus, graphs with hidden names (e.g. XML),

. . .).

Difficulties with defs: capture-avoiding substitution thus evaluation,

type weakening, logics & langs for manipulating graphs with local

names, even model theory . . .� Implementations of logics and calculi (Isabelle, HOL, abstract

machines for calculi above . . .).

Difficulties with defs & algorithms: de Bruijn datatypes with shift

functions make papers and programs unreadable and possibly

bugged, name-carrying terms force hand-coding of �-equivalence,

abstract machines rendered complex, . . .� Denotational semantics (models of �-calculus processes). Model

theory?FM Techniques for Syntax-with-Binding, Oct 2002 22

The six axioms of FMG

Hypothesise type of atoms A . Definitionally extend with type of

permutations PA , bijective f : A ! A . Axioms:� � a = �(a : A)(Act-A) � � �0 � x = (� Æ �0) � x(Act-Æ)

Id � x = x(Act-Id) � � f(x) = (� � f)(� � x)(Eqv1) � � = a closed term(Eqv2)

(Small) 9A 2 A S : A supports x
Here Æ denotes function composition. �(a) denotes value of � as a

function at a. A S � P(A) def= A ! B can be finite sets Pfin(A).FM Techniques for Syntax-with-Binding, Oct 2002 23

The Plan

The axioms above define a Higher-Order Logic (set-theoretic version

exists too, if we prefer). These foundational systems can be used to

interpret functions, state spaces, models, graphs, algorithms, automata,

programming languages, logics, and so on. We interpret (say) a

programming language in an FM universe and use the extra FM

structure to encode binding. We use this encoding of binding to guide

us in the design of, say, a pattern-matching discipline and type system

which provides, in a safe and useful way, the facilities of Slide 20. From

the theory emerges useful practice.

It seems to work. For example, FreshML. Other work being developed

too, for example Pitts’ Nominal Logic, my recent work on the �-calculus,

and work by Urban Pitts and myself on unification of logics-with-binding.

FM Techniques for Syntax-with-Binding, Oct 2002 24

