
FM Techniques for Syntax-with-Binding

Murdoch J. Gabbay, October 2002

FM Techniques for Syntax-with-Binding, Oct 2002 1

Substitution as computation

The syntax of a simple �-calculus:

(1) t:: = x 2 A j t t j �x:t j 0 j Su(t) j t+ t:

Evaluation rules:

x + x �x:t + �x:tt1 + �x:s t2 + V s[V=x℄ +Wt1t2 + W : : :
Thus we see that substitution models computation. Do we have a good

definition of substitution?

FM Techniques for Syntax-with-Binding, Oct 2002 2

Capture-avoiding substitution (not rigorous!)

(2)

[s=x℄x def= s[s=x℄y def= y[s=x℄(t1 t2) def= [s=x℄t1 [s=x℄t2[s=x℄�x:t def= �x:t[s=x℄�y:t def= �y0:[s=x℄[y0=y℄t for y0 fresh:

Last clause: substitution capture-avoiding. Thus for t = x and s = y,[y=x℄�y:x 6= �y:y but [y=x℄�y:x = �y0:y
for some/any fresh y0. What does ‘fresh’ mean? Not rigorous

mathematical specification, and cannot be programmed.FM Techniques for Syntax-with-Binding, Oct 2002 3

Problem appears elsewhere

Similar phenomenon for, say, inlining optimiser:

let y=5 in
let x=f(y) in

let y=7 in <x,x,y>

rewrites to

let y=5 in
let y’=7 in <f(y),f(y),y’>

Note here how we rename y to y0 in the inner binding, so as not to

accidentally capture it.

FM Techniques for Syntax-with-Binding, Oct 2002 4

One solution: de Bruijn

Usual solution: de Bruijn indeces. Variables represented by numbers

with (what I shall call) a “�-offset”. Thus �x:x (and �y:y, �z:z, . . .)

represented by �1; 1 is a pointer to the first � above it. �x:�y:�z:y is

represented by ���2.

De Bruijn presupposes a canonical ordering on the variable names;x1; x2; x3; : : :. Thus �4 represents �x:x3.

Thus �-equivalence is literal equality and the problems of the last slides

are eliminated.

FM Techniques for Syntax-with-Binding, Oct 2002 5

Problem with de Bruijn

. . . to be replaced by anotehr: we sacrifice the natural inductive structure

of terms. E.g. a subterm of �4 is 4, which represents x4 on its own butx3 as it is under a single �, but x2 when under two, and so on. Papers

and programs using de Bruijn use (choke on) “shift functions” to

correctively increment and decrement indeces.

For example substitution [s=x℄t becomes a complicated and possibly

computationally very expensive function, since precisely what gets

substituted for x in t depends very much on how many �s we have

traversed. Indeed, the index representing x itself in not uniform.

FM Techniques for Syntax-with-Binding, Oct 2002 6

Binding is everywhere� Syntax and operational semantics (e.g. �-calculus, PCF,��-calculus, �-calculus . . .).

Difficulties with defs: capture-avoiding substitution thus evaluation

(worse in �� because internalised), type weakening, . . .� Implementations of logics and calculi (Isabelle, HOL, abstract

machines for calculi above . . .).

Difficulties with defs & algorithms: de Bruijn datatypes with shift

functions make papers and programs unreadable and possibly

bugged, name-carrying terms force hand-coding of �-equivalence,

abstract machines rendered complex, . . .� Denotational semantics (models of �-calculus processes).

We are all familiar with binding, but familiarity is not understanding.

FM Techniques for Syntax-with-Binding, Oct 2002 7

Syntax and Semantics

dxez �! `xnbSyntax �! Semantis

Syntax is the object of study here, and we are trying to choose a good

one: if The Word is lousy, we’re at best wasting our time and at worst

damned to eternal torture (this point also observed by other authors).

FM Techniques for Syntax-with-Binding, Oct 2002 8

Usual Model of Syntax

The usual model of syntax is labelled trees. Consider the �-calculus for

arithmetic in (1):t:: = x 2 A j t t j �x:t j 0 j Su(t) j t+ t:

We list the constructors var, app (both sugared above to be

nameless), �, 0, Su, + and assign Inl(Inl(Inl(Inl(Inl(�))))) tovar, Inl(Inl(Inl(Inl(Inr(h � :T;� : T i))))) to app,

Inl(Inl(Inl(Inr(Inr(h � :A ;� : T i))))), and so on. Here T is the type

of syntax trees which we are defining.

This is an inductive definition of syntax, standard practice. As we have

observed, it does not interact well with binding.

FM Techniques for Syntax-with-Binding, Oct 2002 9

We need:

Henceforth variable names will be called atoms . We require support

for:� “Choose a fresh atom” (recall, ‘for y0 fresh’ in the informal definition

of substitution).� “Call the bound atom in an abstraction x” (recall, ‘�1 represents�x:x’; we are actually choosing to call it x).� “Bind x in t” (recall, ‘form �x:t from t’).
This allows us to, for example, give semantics to a program such as

case x’ of <n>x => <n>f(x)

This is the capture-avoiding application of f under the binder: n is

chosen fresh, f applied to the body, then n is rebound.FM Techniques for Syntax-with-Binding, Oct 2002 10

Capture-avoiding substiution (rigorous)

Capture-avoiding substitution becomes:

sub s a var(a) => s
sub s a var(b) => b
sub s a app(t1,t2)

=> app(sub s a t1,sub s a t2)
sub s a lam(<n>t)

=> lam(<n>(sub s a t))

But what is the type system of such a language; we must ensure the

fresh choice of n does not escape its scope. What about the interaction

with state? This is the FreshML project.FM offers a semantics for binding which illuminates the phenomenon it

models. It guides us to type systems, logics, and other formal

environments, with facilities such as the three listed in Slide 10.FM Techniques for Syntax-with-Binding, Oct 2002 11

What is FM?� “FM sets” stands for “Fraenkel-Mostowski set theory”. They are

innocent; presented in [GabbayMJ:thesis], [GabbayMJ:newaas],

[GabbayMJ:newaas-jv].� FM has become an overall label for logics and programming

languages developed using FM sets. Thus for example FreshML

and Pitts’ Nominal Sets.� My latest baby: FMG. Stands for Fraenkel-Mostowski Generalised.

Primitive version presented in [GabbayMJ:hotn], full version in

[GabbayMJ:picfm] (pending publication) with more to follow.� FMG is a Higher-Order Logic (HOL) and can be thought of as a

HOL version of FM sets. However, the presentation is much

cleaner and the system strictly more powerful.

These slides present the special case of FMG corresponding to FM.FM Techniques for Syntax-with-Binding, Oct 2002 12

The Six Rules of the Righteous Binder

Hypothesise type of atoms A . Definitionally extend with type of

permutations PA , bijective f : A ! A . Axioms:� � a = �(a : A)(Act-A) � � �0 � x = (� Æ �0) � x(Act-Æ)

Id � x = x(Act-Id) � � f(x) = (� � f)(� � x)(Eqv1) � � = a closed term(Eqv2)

(Small) 9A 2 A S : A supports x
Here Æ denotes function composition. �(a) denotes value of � as a

function at a. A S � P(A) def= A ! B is finite sets Pfin(A).FM Techniques for Syntax-with-Binding, Oct 2002 13

The Plan

The axioms above define a Higher-Order Logic (set-theoretic version

exists too, if we prefer). These foundational systems can be used to

interpret functions, state spaces, models, graphs, algorithms, automata,

programming languages, logics, and so on. We interpret (say) a

programming language in an FM universe and use the extra FM

structure to encode binding. We use this encoding of binding to guide

us in the design of, say, a pattern-matching discipline and type system

which provides, in a safe and useful way, the facilities of Slide 10. From

the theory emerges useful practice.

It seems to work. For example, FreshML. Other work being developed

too, for example Pitts’ Nominal Logic, my recent work on the �-calculus,

and work by Urban Pitts and myself on unification of logics-with-binding.

FM Techniques for Syntax-with-Binding, Oct 2002 14

Permutation

We return to the axioms, addressing the first five. A now has a

distinguished existence, it contains the variable namesx; y; z; a; b; ;`;a; : : :. For any element t we can apply a permutation� to t: � � t. We do not know what this is, but we do know it is a

permutation action from (Act-Æ) and (Act-Id). Thus � � ��1 � t = t:� � ��1 � t = (� Æ ��1) � t = Id � t = t:

This action is coherent with the natural permutation action on A by

(Act-A). Thus [a 7! b; b 7! a℄ � a : A = b:
The permutation [a 7! b; b 7! a℄ is written (a b) in FM work, and

called transposition .

FM Techniques for Syntax-with-Binding, Oct 2002 15

Equivariance

(Eqv1) and (Eqv2) together ensure equivariance : if F has free

variables x1; : : : ; xn (different xs from those in A !) then� � F (x1; : : : ; xn) = F (� � x1; : : : ; � � xn):

For example:

(3)

� � hx1; x2i = � � �(�x; y:hx; yix1)x2�= (� � (�x; y:hx; yix1))(� � x2)= (� � �x; y:hx; yi)(� � x1)(� � x2)= (�x; y:hx; yi)(� � x1)(� � x2)= h� � x1; � � x2i
Similarly for Inl(�) and Inr(�). Thus these axioms accurately model

the way substitution distributes through tree structure of formal grammar.FM Techniques for Syntax-with-Binding, Oct 2002 16

Support

Let’s use these axioms to build a notion of “the free variables of x”:A supports x def= 8�: � 2 Fix(A) =) � � x = xFix(A � A) def= �� �� 8a 2 A: � � a = a	S(x) def= \�A 2 A S �� A supports x	 :

Theorem 1: S(x) supports x.

FM Techniques for Syntax-with-Binding, Oct 2002 17

Example

1. Syntax: S(Inl(z)) = S(z), S(hz; z0i) = S(z) [S(z0).
2. Syntax: S(�a:t) = fa; S(t)g, where here � is treated as an

ordinary constructor, so �a:t is modelled by Inl(: : : ha; ti) and(a) � �a:t = �:(a) � t.
3. fbg does not support �a:b.

4. fbg does support [�a:b℄=� , �-equivalence class, because�a:b =� �a0:b.

Of course (a b) � �a:b = �b:a 6=� �a:b but (a b) 62 Fix(fbg).

FM Techniques for Syntax-with-Binding, Oct 2002 18

The axiom (Small)

Note we have the notion of support of functions, algorithms, models,

and so on, because permutation is defined on everything. Axiom (Small)

insists that every element has a finite number of free variable names:

(Small) 9A 2 A S : A supports x

Recall A S = Pfin(A). Theorem 1 states that there exists a unique

smallest such A and this is S(x) the support of x.

We can now give a semantics to ‘fresh for’: a#t when a 62 S(t). In this

talk however we pursue the N-quantifier, a binder for ‘choose fresh n’.

FM Techniques for Syntax-with-Binding, Oct 2002 19

NQuantifier

The N(‘new’) quantifier in FM is defined by:Na: P (a) def= 9L 2 A L : 8a 2 L: P (a):

Here A L is Pofin(A), the set of cofinite sets of atoms. L is cofinite

when A n L is finite.

From properties of finite and cofinite sets it follows

(4) Na: P (a) op Na: Q(a) () Na: (P (a) op Q(a))

for op one of ^ and _. Consider for example P (a) = a 2 FV (s) andQ(a) = a 2 FV (t) for s; t in some datatype of terms. Note how

semantics gives rise to a new entity Nin a new logic.

FM Techniques for Syntax-with-Binding, Oct 2002 20

Sets of atoms

Lemma 2: For X � A , S(X) = S(A nX).
Proof. � �X = X if and only if � � (A nX) = (A nX).
Lemma 3: For X � A , X and A nX support X .

Proof. If � fixes every element of X pointwise then clearly� �X = X . If � fixes every element outside X , then it can only

permute elements within X so � �X = X .

Corollary 4: Every X � A is either finite or cofinite:P(A) = Pfin(A) + Pofin(A):

FM Techniques for Syntax-with-Binding, Oct 2002 21

Nand Negation

People often find Corollary 4 counter-intuitive: “what happened to the

rest of the powerset then?”. It does not exist in the FM universe, though

of course it exists in a model of FM inside another, traditional, universe.

This ensures thatNa: P (a)) Na: Q(a) () Na: (P (a)) Q(a))(5) Na: :P (a) () : Na: P (a):(6)

This forms part of a series of excellent properties enjoyed by N. We

have a new logic, and we used FM semantics to develop it. A simple

example of the joys possible.

FM Techniques for Syntax-with-Binding, Oct 2002 22

Example

We now apply this to give an improved definition of �-equivalence =�

for a datatype of �-terms� def= V of A + A of �� �+ L of A � �:=� is given by

(7)

V(a) =� V(b) , a = bA(s1; s2) =� A(t1; t2) , s1 =� t1 ^ s2 =� t2L(a; s) =� L(b; t) , N: (a) � s =� (b) � t:

(Extra joy)

FM Techniques for Syntax-with-Binding, Oct 2002 23

Transposition

We used transposition to define =�. We could use substitution[n2=n1℄ in (7) but transposition has better properties. For example, it

respects =�: s =� t () (a b) � s =� (a b) � t:

For example:

(8)

L(f; L(x; A(f; x))) =� L(f 0; L(x0; A(f 0; x0)))L(x; L(f; A(x; f))) =� L(f 0; L(x0; A(f 0; x0))) (f x)L(f; L(f; A(f; f))) 6=� L(f 0; L(x0; A(f 0; x0))) [f=x℄

FM Techniques for Syntax-with-Binding, Oct 2002 24

Not just �-calculus

We have used the �-calculus as a running example. Do not leave with

the impression that this talk is about the �-calculus. Far from it. In my

most recent paper (with the referees) I apply sophisticated versions of

these techniques to analyse the syntax and semantics of the �-calculus,

a process calculus for modelling distributed, communicating systems

which generate fresh tokens during computation.

We can analyse syntax and semantics because the semantics of the�-calculus is syntax-based, and can suffer very badly from problems

caused by binding. The semantics in question are designed for

model-checking and verification (e.g. of bisimulations).

In my paper I claim to have brought order to the confusion, and to have

opened the door to using FM languages to code novel and effective

algorithms on the models I build.FM Techniques for Syntax-with-Binding, Oct 2002 25

Example 6= the �-calculus:

Proving weakening for some type system:

(9) 8�; t; x: � ` t : T ^ x 62 Dom(�) =) �; x :X ` t : T:

An inductive proof on ` interacts badly with a rule such as�; x :X ` t : T� ` L(x; t) :X ! T x 62 Dom(�)

because we can weaken the conclusion with x but not the assumption.

(10) 8�; t: Nx: � ` t : T =) �; x :X ` t : T

is easy to prove (using properties of Nfrom Slides 20 and 22). � is

finite so Nprovides a ‘context-less’ version of x 62 Dom(�). (9) iff (10)

thanks to equivariance, which for predicates is�((a b) � t) () �(t).FM Techniques for Syntax-with-Binding, Oct 2002 26

Final slide

We can also improve on the rules themselves. � is finite (of course) soNprovides a ‘context-less’ version of x 62 Dom(�):8�: Nx: 8t: �; x :X ` t : T� ` L(x; t) :X ! T

This system is even easier to work with, as I verify for the �-calculus.

I have not mentioned at all how to improve on the datatypes themselves,

that is, produce a model such that �x:x = �y:y, like de Bruijn, and yet

where t is a subterm of �x:t (up to the choice of name for the bound

variable). These are abstraction types [A ℄T . These are wonderful, but

they belong to another talk.

FM Techniques for Syntax-with-Binding, Oct 2002 27

Take-home message� I upheld a noble tradition and lied about the final slide.� Binding is everywhere. Not all people who have problems with

binding identify this as the problem. Anywhere where we create new

tokens (nonces, memory locations, etc.), use them, then throw them

away, there is a possibility to apply FM techniques.

FM Techniques for Syntax-with-Binding, Oct 2002 28

