
Theory and Models of the �-Calculus using

FMG

Murdoch J. Gabbay, November 2002

�-Calculus using FMG, Nov 2002 1



Introduction

The subject of this talk is getting rid of infinities and side conditions in

the transition system of the �-calculus. For example:�n:an:an an0! 0 an any n0 6= aax:xz ay!0 yz any y

Morally there are just three transitions here: output of fresh n0, input ofa, and input of fresh y. Actually there is an infinity of inputs.

Concerning side conditions, the inductive definition of �-calculus

transitions is full of them.

�-Calculus using FMG, Nov 2002 2



The �-calculus using FMG

Standard notion of a Labelled Transition System (LTS) is!� X � L�X;

for X a set of states and L a set of labels. Let an LTS with binding
(LTSB) be !� X � [A ℄(L �X):

For Z arbitrary, [A ℄Z is the well-known A -abstraction set, as

implemented for example in FreshML. Elements ^z : [A ℄Z are like

elements of an abstract datatype; secretly they are pairs ha; zi of a

‘bound atom’ a and a ‘body’ z. However, to get at the body we must

provide the a. This is concretion @, ^z is secretly ha; ^z@ai for fresh a

(not included, like batteries).

�-Calculus using FMG, Nov 2002 3



The �-calculus using FMG

So hx; [a℄hl; x0ii 2! is like a transition which generates a fresh

name, but it does not concretely appear in the transition because it’s

bound. We pass around this abstract object and if eventually we need

access to l and x0 we must provide a fresh name a for the bound atom

and open out the abstraction using concretion.

By convention we write LTSB transitions as follows:x �a:l! x0:

�-Calculus using FMG, Nov 2002 4



An LTSB for the �-calculus, version I(Tau) 8P: Nz: �:P �z:�! P(Out) 8x; y; P: Nz: xy:P �z:xy! P(In) 8x; y: Nn:8P: x[n℄P �n:xy! Pfy=ng(Par1) 8P1; P2: Nz:8�;Q1: P1 �z:�! Q1P1 j P2 �z:�! Q1 j P2(Close1) 8P1; P2; x: Ny:8Q1; Q2: Nz: P1 �y:xy! Q1; P2 �z:xy! Q2P1 j P2 �z:�! �[y℄(Q1 j Q2)(Com1) 8P1; P2; x; y; Q1; Q2: Nz: P1 �z:xy! Q1; P2 �z:xy! Q2P1 j P2 �z:�! Q1 j Q2(Open) 8x: Ny:8P;Q: Nz: P �z:xy! Q�[y℄P �y:xy! Q(Res) 8 ^P: Nz:8 ^Q; �: Ny: ^P@y �z:�! ^Q@y� ^P �z:�! � ^Q(Rep) 8P: Nz:8�;Q: !P j P �z:�! Q!P �z:�! Q

�-Calculus using FMG, Nov 2002 5



Example transitions

xy:xy �n:xy! xy

from (Out). Also x[n℄:x[n℄ �n0:xy! x[y℄

from (In).
A single transition corresponds to the transitions�n:an:an an0! 0 an0 any n0 6= a

previously mentioned, namely�[n℄an:an �n0:an0! an0:
This is one transition, n0 is bound. Let’s use proper terminology since
this is object-level binding: n0 is not in the support of the transition
above (reserve ‘bound’ for meta-level!). That deals with that infinity.�-Calculus using FMG, Nov 2002 6



Example transitions

�[n℄an:an �n0:an0! an0:

Let’s choose some fresh atom for the bound atom in this transition. In
fact choose n0 = n: it need only be fresh for the body of the abstraction[n0℄han0; an0i, which has support fag.

By (In), a[n℄:P �z:an! P [n=n℄ = P:

Here z is a dummy binder: it is bound in the abstraction but does not
occur in the body, so it’s vacuous. Recall we have�[n℄an:an �n:an! an
So from (Close1)a[n℄:P j �[n℄an:an �z:�! �[n℄(P j an):�-Calculus using FMG, Nov 2002 7



The other infinity

Recall that ax:ax ay!0 ay enjoys an infinity of transitions even though

morally there are just two: input of a and input of fresh n. The

corresponding transition a[n℄:an �n0:ay! ay
displays the same problem—at least, it’s a problem if you want to build

models of behaviour of processes. So we consider a ‘minimised’

transition system:

�-Calculus using FMG, Nov 2002 8



An LTSB for the �-calculus, version II

8P;Q; x; y; z: P �z:xy! Q =) P �z:xy!m Q(1) 8P;Q; z: P �z:�! Q =) P �z:�!m Q(2) 8P;Q; x; y; z: P �z:xy! Q =) P �y:xy!m Q(3)!m has an inductive definition as well:

�-Calculus using FMG, Nov 2002 9



An LTSB for the �-calculus, version II(mOut) 8x; y; P: Nz: xy:P �z:xy!m P(mIn) 8x: Nn:8P; y: x[n℄P �y:xy!m Pfy=ng(mPar1a) 8P1; P2: Nz:8�;Q1: P1 �z:�!m Q1P1 j P2 �z:�!m Q1 j P2 � output or �(mPar1b) 8P1; P2; x; y; Q1; Q2: P1 �y:xy!m Q1P1 j P2 �y:xy!m Q1 j P2(mClose1) 8P1; P2; x: Ny:8Q1; Q2: P1 �y:xy!m Q1 P2 �y:xy!m Q2P1 j P2 �z:�!m �[y℄(Q1 j Q2)(mCom1) 8P1; P2; x; y; Q1; Q2: Nz: P1 �z:xy!m Q1 P2 �y:xy!m Q2P1 j P2 �z:�!m Q1 j Q2 y 2 PI(P2; x; y; Q2)(mOpen) 8x: Ny:8P;Q: Nz: P �z:xy!m Q�[y℄P �y:xy!m Q

�-Calculus using FMG, Nov 2002 10



Infinity vanishes

So both infinities vanish:�n:an:an an0! 0 an any n0 6= aax:xz ay!0 yz any y�[n℄an:an �n:an!m ana[b℄:b[z℄ �y:ay!m y[z℄
Here either y = a or y 6= a, so this last expression describes a
two-element set in !m whose elements we can writea[b℄:b[z℄ �a:aa!m a[z℄a[b℄:b[z℄ �b:ab!m b[z℄
(b is not in the support of a[b℄:b[z℄.)�-Calculus using FMG, Nov 2002 11



Name-regular!m has another property which seems to be quite important. It is

name-regular : P ^�!m ^Q ^ a#P =) a#^�; ^Q:

where a#x means “a is not in the support of x”.

Now we have a fighting chance of building models of processes: it is not

hard to prove that !m is finitely branching, and !m is name-regular. The

latter is intimitely related to the validity of the former. Name-regularity

means that fresh names do not appear out of nowhere; either broadcast

from a restriction or input from the environment.

�-Calculus using FMG, Nov 2002 12



Models

The remaining problem is that we do not have an LTS but an LTSB. If we

are willing to consider ‘model’ to be an LTSB we can stop here—check

bisimilarity of P with Q on-the-fly, generating a fresh name n for the

abstractions when we go from P to [n℄h�;Qi at each transition (and

quotienting by structural equivalence).

Similar to taking representative transitions and that kind of thing, except

that with abstractions we do not wed ourselves to particular

representatives. FM gives us nicer semantics. It was designed to.

In order to statically create a concrete model of behaviour we need to

convert the LTSB !m into some kind of LTS. We do this by unfolding the

on-the-fly process. A theorem then states that if P is finite, the LTS

modelling behaviours of P is finite. What we get is much simpler than

HD-automata.�-Calculus using FMG, Nov 2002 13



The labelled transition !dB

Definition: Given name-regular LTSB !m� �� [A ℄A
t � [A ℄�, we

construct !dB� ([L ℄� � N ) � [L ℄A
t � ([L ℄� � N )

defined by

(4) hp; ii �!dB hq; i+ 1i def, Nu : L : p@u �ui+1:�@u!m q@u:

Here uj is the jth element of the list u : L . I said this “unfolds the

on-the-fly process”. The index i means every transition takes place at a

stage i, we use ui+1 as the fresh name for the transition to stage i+1.

Name-regularity means we can choose the list u : L first, no other

names will be created or enter from the environment to interfere with it.�-Calculus using FMG, Nov 2002 14



Models of behaviour

The model of behaviour of some P is the !dB evolutions of P quotiented

by structural congruence, call it M(P ). It is a theorem that if P is

finitary, M(P ) is finite. There is a notion of bisimilarity of M(P ) andM(Q) which is not quite bisimilarity of rooted graphs; we must take

account of the stages.

The nicest thing about all this is that [A ℄� and [L ℄� distribute up and

down through the structure of the graph. For example[L ℄(X � Y ) �= [L ℄X � [L ℄Y . Thus we can think of these graphs of

behaviours in name-carrying and nameless forms, depending as where

we put the abstractions and whether we unpack them with a concrete

fresh u : L .

We already used this, writing P above (of type �). . .

�-Calculus using FMG, Nov 2002 15



Playing with abstractions

. . . taking for granted we can pull abstraction up to top level (whatever

that may be), unpack it, and look at a node P inside. For example the

following are equivalent:P(([L ℄�) � N � ([L ℄A
t) � ([L ℄�) � N )P([L ℄�L � N � A
t � L � N �)[L ℄P(L � N � A
t � L � N ):
Because [L ℄(X � Y ) �= [L ℄X � [L ℄Y , and [L ℄N �= N , andP([L ℄X) �= [L ℄P(X).

�-Calculus using FMG, Nov 2002 16



Bisimilarity of staged graphs with abstractions

Two graphs are bisimilar when there is a relation' between the nodes and

assignement f : '! L � L such that whenever P; i ' Q; j then, writinghv; wi for f(P; i; Q; j),P; 0 ' Q; j =) v = u(5) 8P 0; i0; �: P; i �! P 0; i0 =) 9Q0; j0: Q; j (v w)��! Q0; j0^(6) f(P 0; i0; Q0; j0) = h
ut(i; i0; v); 
ut(j; j0; w)i:
ut(i; i+ 1; v) = vi0 = i+ 1; no change:
ut(3; 1; [v1; v2; v3; v4; v5; : : :℄) = [v1; v4; v5; : : :℄i0 < i+ 1; cut i0 to i+ 1 exclusive
ut(1; 4; [v1; v2; v3; v4; v5; : : :℄) = [v1; a2; a3; v2; v3; : : :℄i0 > i+ 1; pad in i+ 1� i0 fresh atoms at i.�-Calculus using FMG, Nov 2002 17



A simple example

(7) �; 0 xu1! �0; 1 xu2! �; 2 xu3! �0; 3! : : :

is bisimilar to

(8) �; 0 xu1-�xu2 �0; 1

�-Calculus using FMG, Nov 2002 18



Axioms of FMG�; �0 : PA range over all permutations, x :X over all elements of X ,X over all types, a : A over all atoms.� � a = �(a)(9) � � �0 � x = (� Æ �0) � x(10)

Id � x = x(11) � � f(x) = (� � f)(� � x)(12) � � 
 = 
 
 a closed term(13)

(14)

�A 2 A S �� A supports x	 has a least element

�-Calculus using FMG, Nov 2002 19


