Fraenkel MostowskKi
for Names and Binding

Murdoch J. Gabbay, December 2002

Cambridge University, UK,
www.cl.cam.ac.uk/ " mjg1003

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

NOM

What are names? What is binding? Answer: NOM.

NOM is the category of Nominal Sets .
e Originally a set theory F'M Sets GabbayMJ:newaas-jv.
® [s equivalent to already-existing Schanuel Topos .

e Axiomatised in First-Order Logic (FOL) in Nominal Logic
PittsAM:nomlfo-jv in TACS’01 Sendai (Japan, Where F'M News
Breaks First!).

e Presented and applied in GabbayMJ:thempc 2002.

It's a category of sets with a permutation action and finite supporting
set:

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

NOM: Permutation Action

Choose some countably infinite set of atoms a, b, c,n,m,... € A.
Let Py be the set {7T A — A } T bijective}.

For example, (a b) such that a +— b, b — a, and u — u for u # a, b.
Also Id such that ©u — . This is a group under o functional
composition, with identity Id.

Then X € NOM has an action Py — X — X written 7 - 2 which

satisfies
(1) d - x =X
(2) T x =(mon) - x.

|.e. the standard rules of a permutation action.

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

NOM: Examples of permutation action

For example, A has a permutation action given by 7 - u = m(u). Also
A x A has one given by 7 - (u,v) = (7 - u, T - V).

P(X) has a permutation action given pointwise:
m-U = {7‘(’ - U } U € U}. Write P iy, (X) for the set of finite sets of
X, this inherits that pointwise action.

N=1{0,1,2,...} and B = {T, L} have trivial permutation actions
given by m - x = x always.

The set of finite trees with labels has a permutation action given by the
permutation action on the labels. If we model syntax of terms as finite
trees labelled by tags (from N, say) and atoms a, b, ¢, ... € A for
variable symbols, then the permutation action acts on a term by acting
on the variable symbols in that term. More on that later.

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

NOM: Finite Support

Axiom: An X € NOM has finite supporting sets
) Vxe X.35 € Psin(A). Va,b e A.
a,bZS — (ab) -x=u=x.
If we write F'ix(S) L {m | Vs e S.n(s) = s} and
Stab(z) = {7 | 7 -z = x} then this means
1S finite. Fix(S) C Stab(x).

(Infinite such exists A; Id - x = x) Write .S supports x when

Fix(S) C Stab(x).
35 finite. S supports .

Finite supporting set.

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

NOM: Examples of objects 1/3

A € NOM; a is supported by {a }.

X, Y e NOM = X xY € NOM with

m-(x,y) = (m-x,7-y).If S supports x and T’ supports ¥ then
S U T supports (x,).

N=1{0,1,2,...} and B = {T, L} have trivial permutation actions
T - x = T so every x has finite support ().

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

NOM: Examples of objects 2/3

X € NOM = Py (X) € NOM. Pointwise action as described.
If S; supports x; for each x; in some finite U C X then | . .S; is also
finite and supports U'.

X eNOM = {U C X | 35 € Ppin(A). S supports U} €
NOM. This is the NOM powerset. It is not equal to the “external” one:
we cut down to subsets of finite support.

In particular we can verify by calculation that A € P(A) if and only if A
is finite, with finite supporting set A, or A is cofinite (A \ A finite) with
finite supporting set A \ A. So

P(A) = Prin(A) + Peopin(A).

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

NOM: Examples of objects 3/3

The set of finite trees with labels has a permutation action given by the
permutation action on the labels. The support of a tree is the union of
the supports of its (finitely many) labels. Thus for example:

(4) A=ZA+AXA+A XA

Permutation action on labels:
m-a=mn(a) 7 (t1te) = (7w -t1)(m-t2)

©) Xt = A(m(a))m - .

Lemma 1: Any x € X in NOM has a unique smallest supporting set.
Call this the support of .

Support of t € Ais n(t), the names in t (free or bound).

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

(-equivalence

Proofs for ai-equivalence t =, t’ are trees built up using the rules

1 =a tll lo =q tl2

t1to =4 t)t]

a=qa (Var), (App)

(6)

Hnja} =a 0/} oo
\at =, \a't’ "

where in (Lam), there is a side-condition that
n ¢ {a,a’} Un(t) Un(t') (the obvious support of the conclusion).
So the valid proofs of =, are an inductively defined subset of

T A (Var)
(7) + T'xT (App)
+ AxTxT (Lam),

of “well-formed” trees schematically described by the rules above.

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

Equivariance

Theorem 2: If a relation is defined using rules invariant under
permuting atoms, then the inductively defined set is itself invariant under
permuting atoms.

Proof: Well-formedness of proof-trees is preserved, by assumption,
under permuting atoms.

So we verify by simple inspection that all rules defining =, are invariant
under permutation, so t =,, t’ ifand only if (a b) -t =, (a b) - t'.

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003 10

Transitivity of —, 1/3

Proof by induction on proof-trees that

/7

/!
s=q8 = Vs'. (s =45 = s=,5").

Consider just the case s = \at, s' = \a't’, " = Aa”t"”. Suppose
we have two proofs

T

t{n/a} =, t'{n/a’} (Lam),k
Aat =, \a't’

(8)

/
7Tn/

t{n' ja} =q t"{n'/a"} (Lam) ,.
X't =4 Aa''t"

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

11

Transitivity of =, 2/3

Observe that we can permute n and n’ to entirely fresh m to obtain two

valid proofs
Tm
t{m/a} =, t'{m/a’} (Lam)
Aat =, Aa't’
(9) /
-

t'{m/a} =4 t"{m/a"} (Lam), .
)\a/t/ —)\a//t//

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

12

Transitivity of =, 3/3

Furthermore proofs of the inductive hypothesis are themselves trees
and using Theorem 2 we deduce from the inductive hypothesis for
t{n/a},t’"{n/a’} the same hypothesis for t{m/a},t'{m/a’}.
Since t'{m/a’} =, t"{m/a""} we deduce \at =, Aa"t" as
required.

This was a sketch of a type of reasoning which seems in practice to be
the lemma people often need in practice: if the name is fresh, you can
rename it without changing truth values so long as the proposition is
Invariant under permuting names in its parameter.

They always are: we just parametarise over all atoms. Call this
equivariance reasoning

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

13

Abstractions

So what is the support of the proof

7Tm
(10) t{m/a} =, t'{m/a’} (Lam)_.
Aat =, \a't’

As a tree, it is the union of the supports of its components. However,
there is an equivalence class of proofs for different m so long as m is
fresh. This motivates the following definitions:

e Write S () for the least set supporting = (Lemma 1).

o Write [a]z for {7 - (a,z) | ™ € Fiz(S(z)\ a)}.

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

14

Abstractions: Examples 1/3

alz = {m - (a,z) | 7 € Fiz(S(z)\ a)}.

Recall 7 - (a,x) = (w(a), 7 - x).

S(a) ={a} ala = {{(a,a), (b,b),...}
S(b) ={b} lalb={(a,b),(c,D),...}
S(t)=n(t) lalt={(,(ba)-t) | bgn(t)Vb=a}.

mes and Binding 2002, www.cl.cam.ac.uk/"mjg1003

Abstractions: Examples 2/3

If we call the following proof K,,,:

TTm
(11) t{m/a} =, t'{m/a’} (Lam)
Aat =, \a't’

then [m]k,, is the equivalence class mentioned two slides ago.

write [A| X for {[a]z | a € A, x € X }. Then a datatype of
proofs-up-to-equivalence can be written

T= A (Var)
(12) + TxT (App)
+ (AT xT) (Lam),.

These are proofs of =, up to choices of fresh atoms.

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

16

Abstractions: Examples 3/3

We can also simplify the syntax and be rid of =, entirely:

A= A t:= a
(13) + Ay X A, t1to
+ [AJA, alt

This is an inductive datatype of terms of A pre-quotiented by =,

A, = (A =,). But A, is inductive.

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

17

FreshML Programming

bindable type Name (* names *)

datatype Lambda

Var of Name (* a *)
| App of Lambda*Lambda (* t1 t2 *)
| Lam of <Name>Lambda (* lam a t *)

val rec subst : Name*Lambda*Lambda -> Lambda

fn (n,Var x,s) =>
If n=x then Var x else s
| (n,App t1 t2,s) =>
subst(n,tl,s) subst(n,t2,s)
| (n,Lam <a>t,s) =>
Lam <a>(subst(n,t,s))

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

(* Lambda-terms *)

18

E'M: the nominal approach

Standard formula: Have a type of names such as N. Model variables
using X or N X X (de Bruijn and Name-carrying), or possibly N — X
(Higher-Order Abstract syntax, HOAS).

Deal with freshness using index sets of “known names”, or relegate
them to the meta-level in the case of HOAS.

Deal with binding with difficulty.

E'M formula: Work in the previous domain (e.g. sets) but with
permutation actions and finite support (e.g. nominal sets).

Deal with freshness using support S(—).

Deal with binding with [A]—.

Also: V1, @, abstractive functions, &, ...

FM for Names and Binding 2002, www.cl.cam.ac.uk/"mjg1003

19

