
Fraenkel Mostowski

for Names and Binding

Murdoch J. Gabbay, December 2002

Cambridge University, UK,
www.cl.cam.ac.uk/˜mjg1003

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 1

NOM

What are names? What is binding? Answer: NOM.

NOM is the category of Nominal Sets .

• Originally a set theory FM Sets GabbayMJ:newaas-jv.

• Is equivalent to already-existing Schanuel Topos .

• Axiomatised in First-Order Logic (FOL) in Nominal Logic
PittsAM:nomlfo-jv in TACS’01 Sendai (Japan, Where FM News

Breaks First!).

• Presented and applied in GabbayMJ:thempc 2002.

It’s a category of sets with a permutation action and finite supporting
set :

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 2

NOM: Permutation Action

Choose some countably infinite set of atoms a, b, c, n,m, . . . ∈ A.

Let PA be the set
{
π : A → A

∣∣ π bijective
}

.

For example, (a b) such that a 7→ b, b 7→ a, and u 7→ u for u 6= a, b.

Also Id such that u 7→ u. This is a group under ◦ functional

composition, with identity Id.

Then X ∈ NOM has an action PA → X → X written π · x which

satisfies

Id · x = x(1)

π · π′ · x = (π ◦ π′) · x.(2)

I.e. the standard rules of a permutation action.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 3

NOM: Examples of permutation action

For example, A has a permutation action given by π · u = π(u). Also

A× A has one given by π · 〈u, v〉 = 〈π · u, π · v〉.
P(X) has a permutation action given pointwise:

π · U =
{
π · u

∣∣ u ∈ U
}

. Write Pfin(X) for the set of finite sets of

X , this inherits that pointwise action.

N = {0, 1, 2, . . .} and B = {>,⊥} have trivial permutation actions

given by π · x = x always.

The set of finite trees with labels has a permutation action given by the

permutation action on the labels. If we model syntax of terms as finite

trees labelled by tags (from N, say) and atoms a, b, c, . . . ∈ A for

variable symbols, then the permutation action acts on a term by acting

on the variable symbols in that term. More on that later.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 4

NOM: Finite Support

Axiom: An X ∈ NOM has finite supporting sets :

(3) ∀x ∈ X. ∃S ∈ Pfin(A). ∀a, b ∈ A.

a, b 6∈ S =⇒ (a b) · x = x.

If we write Fix(S) def=
{
π

∣∣ ∀s ∈ S. π(s) = s
}

and

Stab(x) =
{
π

∣∣ π · x = x
}

then this means

∃S finite. F ix(S) ⊆ Stab(x).

(Infinite such exists A; Id · x = x) Write S supports x when

Fix(S) ⊆ Stab(x).

∃S finite. S supports x.

Finite supporting set.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 5

NOM: Examples of objects 1/3

A ∈ NOM; a is supported by {a}.

X, Y ∈ NOM =⇒ X × Y ∈ NOM with

π · 〈x, y〉 = 〈π · x, π · y〉. If S supports x and T supports y then

S ∪ T supports 〈x, y〉.

N = {0, 1, 2, . . .} and B = {>,⊥} have trivial permutation actions

π · x = x so every x has finite support ∅.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 6

NOM: Examples of objects 2/3

X ∈ NOM =⇒ Pfin(X) ∈ NOM. Pointwise action as described.

If Si supports xi for each xi in some finite U ⊆ X then
⋃

i Si is also

finite and supports U .

X ∈ NOM =⇒
{
U ⊆ X

∣∣ ∃S ∈ Pfin(A). S supports U
}
∈

NOM. This is the NOM powerset. It is not equal to the “external” one:

we cut down to subsets of finite support.

In particular we can verify by calculation that A ∈ P(A) if and only if A
is finite, with finite supporting set A, or A is cofinite (A \A finite) with

finite supporting set A \A. So

P(A) = Pfin(A) + Pcofin(A).

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 7

NOM: Examples of objects 3/3

The set of finite trees with labels has a permutation action given by the

permutation action on the labels. The support of a tree is the union of

the supports of its (finitely many) labels. Thus for example:

(4) Λ ∼= A + Λ× Λ + A× Λ.

Permutation action on labels:

(5)
π · a = π(a) π · (t1t2) = (π · t1)(π · t2)

π · λat = λ(π(a))π · t.

Lemma 1: Any x ∈ X in NOM has a unique smallest supporting set.

Call this the support of x.

Support of t ∈ Λ is n(t), the names in t (free or bound).

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 8

α-equivalence

Proofs for α-equivalence t =α t′ are trees built up using the rules

(6)

a =α a (Var)a

t1 =α t′1 t2 =α t′2
t1t2 =α t′1t

′
2

(App)

t{n/a} =α t′{n/a′}
λat =α λa′t′

(Lam)n

where in (Lam)n there is a side-condition that

n 6∈ {a, a′} ∪ n(t) ∪ n(t′) (the obvious support of the conclusion).

So the valid proofs of =α are an inductively defined subset of

(7)

T ∼= A (Var)a

+ T × T (App)

+ A× T × T (Lam)n

of “well-formed” trees schematically described by the rules above.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 9

Equivariance

Theorem 2: If a relation is defined using rules invariant under

permuting atoms, then the inductively defined set is itself invariant under

permuting atoms.

Proof: Well-formedness of proof-trees is preserved, by assumption,

under permuting atoms.

So we verify by simple inspection that all rules defining =α are invariant

under permutation, so t =α t′ if and only if (a b) · t =α (a b) · t′.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 10

Transitivity of =α 1/3

Proof by induction on proof-trees that

s =α s′ =⇒ ∀s′′. (s′ =α s′′ =⇒ s =α s′′).

Consider just the case s = λat, s′ = λa′t′, s′′ = λa′′t′′. Suppose

we have two proofs

(8)

πn

t{n/a} =α t′{n/a′}
λat =α λa′t′

(Lam)n

π′
n′

t′{n′/a} =α t′′{n′/a′′}
λa′t′ =α λa′′t′′

(Lam)n′ .

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 11

Transitivity of =α 2/3

Observe that we can permute n and n′ to entirely fresh m to obtain two

valid proofs

(9)

πm

t{m/a} =α t′{m/a′}
λat =α λa′t′

(Lam)m

π′
m

t′{m/a} =α t′′{m/a′′}
λa′t′ =α λa′′t′′

(Lam)m.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 12

Transitivity of =α 3/3

Furthermore proofs of the inductive hypothesis are themselves trees

and using Theorem 2 we deduce from the inductive hypothesis for

t{n/a}, t′{n/a′} the same hypothesis for t{m/a}, t′{m/a′}.

Since t′{m/a′} =α t′′{m/a′′} we deduce λat =α λa′′t′′ as

required.

This was a sketch of a type of reasoning which seems in practice to be

the lemma people often need in practice: if the name is fresh, you can

rename it without changing truth values so long as the proposition is

invariant under permuting names in its parameter.

They always are: we just parametarise over all atoms. Call this

equivariance reasoning .

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 13

Abstractions

So what is the support of the proof

(10)

πm

t{m/a} =α t′{m/a′}
λat =α λa′t′

(Lam)m.

As a tree, it is the union of the supports of its components. However,

there is an equivalence class of proofs for different m so long as m is

fresh. This motivates the following definitions:

• Write S(x) for the least set supporting x (Lemma 1).

• Write [a]x for
{
π · 〈a, x〉

∣∣ π ∈ Fix(S(x) \ a)
}

.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 14

Abstractions: Examples 1/3

[a]x =
{
π · 〈a, x〉

∣∣ π ∈ Fix(S(x) \ a)
}

.

Recall π · 〈a, x〉 = 〈π(a), π · x〉.

S(a) = {a} [a]a = {〈a, a〉, 〈b, b〉, . . .}
S(b) = {b} [a]b = {〈a, b〉, 〈c, b〉, . . .}
S(t) = n(t) [a]t =

{
〈b, (b a) · t〉

∣∣ b 6∈ n(t) ∨ b = a
}

.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 15

Abstractions: Examples 2/3

If we call the following proof κm:

(11)

πm

t{m/a} =α t′{m/a′}
λat =α λa′t′

(Lam)m

then [m]κm is the equivalence class mentioned two slides ago.

Write [A]X for
{
[a]x

∣∣ a ∈ A, x ∈ X
}

. Then a datatype of

proofs-up-to-equivalence can be written

(12)

T ∼= A (Var)a

+ T × T (App)

+ [A](T × T) (Lam)∗.

These are proofs of =α up to choices of fresh atoms.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 16

Abstractions: Examples 3/3

We can also simplify the syntax and be rid of =α entirely:

(13)

Λα
∼= A t ::= a

+ Λα × Λα t1t2

+ [A]Λα [a]t

This is an inductive datatype of terms of Λ pre-quotiented by =α:

Λα
∼= (Λ/ =α). But Λα is inductive.

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 17

FreshML Programming

bindable_type Name (* names *)
;
datatype Lambda = (* Lambda-terms *)

Var of Name (* a *)
| App of Lambda*Lambda (* t1 t2 *)
| Lam of <Name>Lambda (* lam a t *)

;

val rec subst : Name*Lambda*Lambda -> Lambda =
fn (n,Var x,s) =>

if n=x then Var x else s
| (n,App t1 t2,s) =>

subst(n,t1,s) subst(n,t2,s)
| (n,Lam <a>t,s) =>

Lam <a>(subst(n,t,s))
;

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 18

FM: the nominal approach

Standard formula: Have a type of names such as N. Model variables

using X or N×X (de Bruijn and Name-carrying), or possibly N → X
(Higher-Order Abstract syntax, HOAS).

Deal with freshness using index sets of “known names”, or relegate

them to the meta-level in the case of HOAS.

Deal with binding with difficulty.

FM formula: Work in the previous domain (e.g. sets) but with

permutation actions and finite support (e.g. nominal sets).

Deal with freshness using support S(−).

Deal with binding with [A]−.

Also: N, @, abstractive functions, ⊗, . . .

FM for Names and Binding 2002, www.cl.cam.ac.uk/˜mjg1003 19

