Fraenkel Mostowski
 for Names and Binding

Murdoch J. Gabbay, December 2002
Cambridge University, UK, www.cl.cam.ac.uk/~mjg1003

What are names? What is binding? Answer: NOM.
NOM is the category of Nominal Sets.

- Originally a set theory FM Sets GabbayMJ:newaas-jv.
- Is equivalent to already-existing Schanuel Topos.
- Axiomatised in First-Order Logic (FOL) in Nominal Logic PittsAM:nomlfo-jv in TACS'01 Sendai (Japan, Where FM News Breaks First!).
- Presented and applied in GabbayMJ:thempc 2002.

It's a category of sets with a permutation action and finite supporting set:

NOM: Permutation Action

Choose some countably infinite set of atoms $a, b, c, n, m, \ldots \in \mathbb{A}$. Let $P_{\mathbb{A}}$ be the set $\{\pi: \mathbb{A} \rightarrow \mathbb{A} \mid \pi$ bijective $\}$.
For example, $(a b)$ such that $a \longmapsto b, b \mapsto a$, and $u \mapsto u$ for $u \neq a, b$. Also Id such that $u \mapsto u$. This is a group under \circ functional composition, with identity Id.

Then $X \in \mathrm{NOM}$ has an action $P_{\mathbb{A}} \rightarrow X \rightarrow X$ written $\pi \cdot x$ which satisfies

(1)	Id $\cdot x$	$=x$
(2)	$\pi \cdot \pi^{\prime} \cdot x$	$=\left(\pi \circ \pi^{\prime}\right) \cdot x$.

l.e. the standard rules of a permutation action.

For example, \mathbb{A} has a permutation action given by $\pi \cdot u=\pi(u)$. Also $\mathbb{A} \times \mathbb{A}$ has one given by $\pi \cdot\langle u, v\rangle=\langle\pi \cdot u, \pi \cdot v\rangle$.
$\mathcal{P}(X)$ has a permutation action given pointwise:
$\pi \cdot U=\{\pi \cdot u \mid u \in U\}$. Write $\mathcal{P}_{\text {fin }}(X)$ for the set of finite sets of X, this inherits that pointwise action.
$\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{B}=\{\top, \perp\}$ have trivial permutation actions given by $\pi \cdot x=x$ always.
The set of finite trees with labels has a permutation action given by the permutation action on the labels. If we model syntax of terms as finite trees labelled by tags (from \mathbb{N}, say) and atoms $a, b, c, \ldots \in \mathbb{A}$ for variable symbols, then the permutation action acts on a term by acting on the variable symbols in that term. More on that later.

Axiom: An $X \in$ NOM has finite supporting sets:
(3) $\forall x \in X . \exists S \in \mathcal{P}_{\text {fin }}(\mathbb{A}) . \forall a, b \in \mathbb{A}$.

$$
a, b \notin S \Longrightarrow(a b) \cdot x=x
$$

If we write $\operatorname{Fix}(S) \stackrel{\text { def }}{=}\{\pi \mid \forall s \in S . \pi(s)=s\}$ and
$\operatorname{Stab}(x)=\{\pi \mid \pi \cdot x=x\}$ then this means
$\exists S$ finite. $\operatorname{Fix}(S) \subseteq \operatorname{Stab}(x)$.
(Infinite such exists $\mathbb{A} ; \mathbf{I d} \cdot x=x$) Write S supports x when $F i x(S) \subseteq \operatorname{Stab}(x)$.
$\exists S$ finite. S supports x.
Finite supporting set.

[^0]$X \in \mathrm{NOM} \Longrightarrow \mathcal{P}_{\text {fin }}(X) \in$ NOM. Pointwise action as described. If S_{i} supports x_{i} for each x_{i} in some finite $U \subseteq X$ then $\bigcup_{i} S_{i}$ is also finite and supports U.
$X \in \mathrm{NOM} \Longrightarrow\left\{U \subseteq X \mid \exists S \in \mathcal{P}_{\text {fin }}(\mathbb{A}) . S\right.$ supports $\left.U\right\} \in$ NOM. This is the NOM powerset. It is not equal to the "external" one: we cut down to subsets of finite support.

In particular we can verify by calculation that $A \in \mathcal{P}(\mathbb{A})$ if and only if A is finite, with finite supporting set A, or A is cofinite ($\mathbb{A} \backslash A$ finite) with finite supporting set $\mathbb{A} \backslash A$. So

$$
\mathcal{P}(\mathbb{A})=\mathcal{P}_{\text {fin }}(\mathbb{A})+\mathcal{P}_{\text {cofin }}(\mathbb{A})
$$

The set of finite trees with labels has a permutation action given by the permutation action on the labels. The support of a tree is the union of the supports of its (finitely many) labels. Thus for example:

$$
\begin{equation*}
\Lambda \cong \mathbb{A}+\Lambda \times \Lambda+\mathbb{A} \times \Lambda \tag{4}
\end{equation*}
$$

Permutation action on labels:

$$
\begin{gather*}
\pi \cdot a=\pi(a) \quad \pi \cdot\left(t_{1} t_{2}\right)=\left(\pi \cdot t_{1}\right)\left(\pi \cdot t_{2}\right) \\
\pi \cdot \lambda a t=\lambda(\pi(a)) \pi \cdot t . \tag{5}
\end{gather*}
$$

Lemma 1: Any $x \in X$ in NOM has a unique smallest supporting set. Call this the support of x.
Support of $t \in \Lambda$ is $n(t)$, the names in t (free or bound).

Proofs for α-equivalence $t={ }_{\alpha} t^{\prime}$ are trees built up using the rules
(6)

$$
a={ }_{\alpha} a \quad(\mathbf{V a r})_{a} \frac{t_{1}={ }_{\alpha} t_{1}^{\prime} t_{2}={ }_{\alpha} t_{2}^{\prime}}{t_{1} t_{2}={ }_{\alpha} t_{1}^{\prime} t_{2}^{\prime}} \quad(\mathbf{A p p})
$$

$$
\frac{t\{n / a\}={ }_{\alpha} t^{\prime}\left\{n / a^{\prime}\right\}}{\lambda a t={ }_{\alpha} \lambda a^{\prime} t^{\prime}}(\mathbf{L a m})_{n}
$$

where in $(\mathbf{L a m})_{n}$ there is a side-condition that $n \notin\left\{a, a^{\prime}\right\} \cup n(t) \cup n\left(t^{\prime}\right)$ (the obvious support of the conclusion).
So the valid proofs of $={ }_{\alpha}$ are an inductively defined subset of
(7)

$$
\begin{array}{rlrl}
T & \cong \mathbb{A} & & (\mathbf{V a r})_{a} \\
& + & T \times T & \\
& (\mathbf{A p p}) \\
& \mathbb{A} \times T \times T & & (\mathbf{L a m})_{n}
\end{array}
$$

of "well-formed" trees schematically described by the rules above.

Equivariance

Theorem 2: If a relation is defined using rules invariant under
permuting atoms, then the inductively defined set is itself invariant under permuting atoms.
Proof: Well-formedness of proof-trees is preserved, by assumption, under permuting atoms.

So we verify by simple inspection that all rules defining $={ }_{\alpha}$ are invariant under permutation, so $t={ }_{\alpha} t^{\prime}$ if and only if $(a b) \cdot t={ }_{\alpha}(a b) \cdot t^{\prime}$.

Proof by induction on proof-trees that

$$
s={ }_{\alpha} s^{\prime} \Longrightarrow \forall s^{\prime \prime} \cdot\left(s^{\prime}={ }_{\alpha} s^{\prime \prime} \Longrightarrow s={ }_{\alpha} s^{\prime \prime}\right)
$$

Consider just the case $s=\lambda a t, s^{\prime}=\lambda a^{\prime} t^{\prime}, s^{\prime \prime}=\lambda a^{\prime \prime} t^{\prime \prime}$. Suppose we have two proofs

$$
\frac{\pi_{n}}{\frac{t\{n / a\}={ }_{\alpha} t^{\prime}\left\{n / a^{\prime}\right\}}{\lambda a t={ }_{\alpha} \lambda a^{\prime} t^{\prime}}}(\mathbf{L a m})_{n}
$$

(8)

$$
\frac{\frac{\pi_{n^{\prime}}^{\prime}}{t^{\prime}\left\{n^{\prime} / a\right\}={ }_{\alpha} t^{\prime \prime}\left\{n^{\prime} / a^{\prime \prime}\right\}}}{\lambda a^{\prime} t^{\prime}={ }_{\alpha} \lambda a^{\prime \prime} t^{\prime \prime}} \quad(\mathbf{L a m})_{n^{\prime}}
$$

Observe that we can permute n and n^{\prime} to entirely fresh m to obtain two valid proofs
(9)

$$
\frac{\pi_{m}}{\frac{t\{m / a\}={ }_{\alpha} t^{\prime}\left\{m / a^{\prime}\right\}}{\lambda a t={ }_{\alpha} \lambda a^{\prime} t^{\prime}}}(\mathbf{L a m})_{m}
$$

$$
\frac{\frac{\pi_{m}^{\prime}}{t^{\prime}\{m / a\}={ }_{\alpha} t^{\prime \prime}\left\{m / a^{\prime \prime}\right\}}}{\lambda a^{\prime} t^{\prime}={ }_{\alpha} \lambda a^{\prime \prime} t^{\prime \prime}}(\mathbf{L a m})_{m}
$$

Furthermore proofs of the inductive hypothesis are themselves trees and using Theorem 2 we deduce from the inductive hypothesis for $t\{n / a\}, t^{\prime}\left\{n / a^{\prime}\right\}$ the same hypothesis for $t\{m / a\}, t^{\prime}\left\{m / a^{\prime}\right\}$. Since $t^{\prime}\left\{m / a^{\prime}\right\}={ }_{\alpha} t^{\prime \prime}\left\{m / a^{\prime \prime}\right\}$ we deduce $\lambda a t={ }_{\alpha} \lambda a^{\prime \prime} t^{\prime \prime}$ as required.

This was a sketch of a type of reasoning which seems in practice to be the lemma people often need in practice: if the name is fresh, you can rename it without changing truth values so long as the proposition is invariant under permuting names in its parameter.

They always are: we just parametarise over all atoms. Call this equivariance reasoning.

Abstractions

So what is the support of the proof
(10)

$$
\frac{\pi_{m}}{\frac{t\{m / a\}={ }_{\alpha} t^{\prime}\left\{m / a^{\prime}\right\}}{\lambda a t={ }_{\alpha} \lambda a^{\prime} t^{\prime}}}(\mathbf{L a m})_{m} .
$$

As a tree, it is the union of the supports of its components. However, there is an equivalence class of proofs for different m so long as m is fresh. This motivates the following definitions:

- Write $S(x)$ for the least set supporting x (Lemma 1).
- Write $[a] x$ for $\{\pi \cdot\langle a, x\rangle \mid \pi \in \operatorname{Fix}(S(x) \backslash a)\}$.

Abstractions: Examples 1/3

$[a] x=\{\pi \cdot\langle a, x\rangle \mid \pi \in \operatorname{Fix}(S(x) \backslash a)\}$.
Recall $\pi \cdot\langle a, x\rangle=\langle\pi(a), \pi \cdot x\rangle$.

$$
\begin{array}{lll}
S(a)=\{a\} & {[a] a=\{\langle a, a\rangle,\langle b, b\rangle, \ldots\}} \\
S(b)=\{b\} & {[a] b=\{\langle a, b\rangle,\langle c, b\rangle, \ldots\}} \\
S(t)=n(t) & & {[a] t=\{\langle b,(b a) \cdot t\rangle \mid b \notin n(t) \vee b=a\} .}
\end{array}
$$

If we call the following proof κ_{m} :
then $[m] \kappa_{m}$ is the equivalence class mentioned two slides ago.
Write $[\mathbb{A}] X$ for $\{[a] x \mid a \in \mathbb{A}, x \in X\}$. Then a datatype of proofs-up-to-equivalence can be written
(12)

$$
\begin{array}{rll}
T \cong & \mathbb{A} & \\
+ & T \times T & \\
& (\mathbf{V a r})_{a} \\
+ & {[\mathbb{A}](T \times T)} & \\
\hline \mathbf{L a m})_{*} .
\end{array}
$$

These are proofs of $=\alpha$ up to choices of fresh atoms.

We can also simplify the syntax and be rid of $={ }_{\alpha}$ entirely:

(13)	$+\Lambda_{\alpha} \times \Lambda_{\alpha}$	$t_{1} t_{2}$
	$+[\mathbb{A}] \Lambda_{\alpha}$	$[a] t$

This is an inductive datatype of terms of Λ pre-quotiented by $={ }_{\alpha}$:
$\Lambda_{\alpha} \cong\left(\Lambda /={ }_{\alpha}\right)$. But Λ_{α} is inductive.

```
bindable_type Name
(* names *)
;
datatype Lambda = (* Lambda-terms *)
    Var of Name
    App of Lambda*Lambda
    Lam of <Name>Lambda
;
val rec subst : Name*Lambda*Lambda -> Lambda =
    fn (n,Var x,s) =>
                if n=x then Var x else s
        (n,App t1 t2,s) =>
                subst(n,t1,s) subst(n,t2,s)
        | (n,Lam <a>t,s) =>
                Lam <a> (subst (n,t,s))
;
```

Standard formula: Have a type of names such as \mathbb{N}. Model variables
using X or $\mathbb{N} \times X$ (de Bruijn and Name-carrying), or possibly $\mathbb{N} \rightarrow X$ (Higher-Order Abstract syntax, HOAS).
Deal with freshness using index sets of "known names", or relegate
them to the meta-level in the case of HOAS.
Deal with binding with difficulty.
FM formula: Work in the previous domain (e.g. sets) but with
permutation actions and finite support (e.g. nominal sets).
Deal with freshness using support $S(-)$.
Deal with binding with $[\mathbb{A}]-$.
Also: И, @, abstractive functions, \otimes, \ldots

[^0]: $\mathbb{A} \in \mathrm{NOM} ; a$ is supported by $\{a\}$.
 $X, Y \in \mathrm{NOM} \Longrightarrow X \times Y \in \mathrm{NOM}$ with $\pi \cdot\langle x, y\rangle=\langle\pi \cdot x, \pi \cdot y\rangle$. If S supports x and T supports y then $S \cup T$ supports $\langle x, y\rangle$.
 $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{B}=\{\top, \perp\}$ have trivial permutation actions $\pi \cdot x=x$ so every x has finite support \emptyset.

