
Incomplete -terms

Murdoch J. Gabbay

February 11, 2004

Incomplete � -Terms. February 11, 2004. 1

First-order predicate logic with equality
� � � � �

� � � �

� � � � � �

� � � � � �

� � �

� � � �

� �
� � � �

� � � � � � � � �

� � � � � �

� � � �

� � � �

� � � � � � �

� � � � � �

� � �

� � �	
 �
� � � �	 �� � � �

� � � 	
 � � �

� � � �	 � � �

� �� 	
 �

� � � � �

� �� 	
 � � �

� � � � � � �

� �

� � � � � � �

� � � � � � ��� � � � ��

� �� � � � �

� � �

� �� � � � � � �	 � � � � � �

� �� � � � � � �	 � � � � � � � � � �

Incomplete � -Terms. February 11, 2004. 2

Encoding

We want a � -term for proof-search in First-Order Logic.

Introduce constants� ��� � � � � � � ��� � � , and� , ‘predicate constant

symbols’ � �� ��� , ‘equality’ � , and ‘term-formers’ � . Also introduce a

comma � ‘entailment’ � and pairing � - � - 	 .

We are spoilt for choice in our encoding:

� ��
 � � � 	 � �

 � �

We could also use FM abstractions, but then we’d have to introduce

them into the � -calculus.

Use� �

 � � and � �

 � � . Discuss why later (perhaps).

Incomplete � -Terms. February 11, 2004. 3

Our goal

A � -term which when applied to � � � returns ‘yes’ just if a proof

exists. We could also exhibit a � -term which constructs a proof, using

meta-variables, but that involves lists of constraints. Existential variables

are simpler and test the same principles, see below.

� -left and� -right rules have� , deadly for proof-search. Instead use an

existential variable � . � � � �	 � � �

� � � 	
 �
At equalities� � � a unification algorithm calculates instantiations

� � � � � ; these are passed around and applied to remaining goals.

Substitution, as we shall see, is not capture-avoiding, because � may

occur under the scope of � and� binders.

Incomplete � -Terms. February 11, 2004. 4

� -calculus with meta-variables

Hypothesise an infinite collection of disjoint countably infinite sets of
atoms
 � � � � . These represent variable symbols in our calculus.

The syntax is:

� � � �
 � �� � � �
 �
� �� �
 � � � � ��
 �
�

None of these constructors bind. For example, �
 �

 � �	� �
 �

 � .

Incomplete � -Terms. February 11, 2004. 5

� -calculus with meta-variables

(�) � �
 �
� ��� � �
 � � � �

(�
 �)
 � �
 � � � � �

(� 	 �) 	 �
 � � 	 � �
 � � � � 	 � � 	

(� �) ���� � �
 � � � � � �
 � � � �� �
 � � � �

(� �) � �
 � � � � � � � �
� � �
 � � � � � � �
 �� �
 � � � � � �

(� � �) � � � �
� � �
 � � � � � � �
 �� �
 � � � � � � �

(� �)
 � � �
 � �� �
 � � � � �
 � � � � � �
 � � � � �
 � � � �
 � � � � � � 	

(� � �) � �
 � � � � �
 � � � � � �
 � � � � �
 � � � �
 � � � � � � �

Incomplete � -Terms. February 11, 2004. 6

� -calculus with meta-variables

(� �) � � � � � �� � �
� �� � � � �
 �� � �
�

(� �) � �
 � � �
 �
� � �
� � � � �
 �
 �
�

(� �) � �
 � � � � �� � �
� � �
 � � � � � � �
 �� �
 � � � � �

(� �)
 � � � �
 �
� �
 �
 �
 �
 � ��

Swapping �
 �
 � �� is a Nominal Rewriting primitive, it is that term

obtained by replacing every
 � by
 � , and vice-versa, in� (see

discussion in final slices).

Incomplete � -Terms. February 11, 2004. 7

Examples

Write
 �
 ��� for variables of level 0, � ��� ��� for variables of level 1, and

� �� �� for variables of level 2.� for
 � clashes with the notation� for

unknown terms in the Nominal Rewriting framework; oh well.

��

 �

 � �
 �
 � �� �
 � �
�
 � �
 �
 � � �
 � �
�
 .

� �

 � �
 �
 � .

� �

 � � � � �
 � �

 .

��

 �

 � � � � �
 � �� �
 � �
� � � � � �
 � � �
 � �
�
 .

�

 �
 �
 �
 � � �

 .

�

 �
 � � �
 � � �

 .

� �
 � � � � �
 � � � �

 .

Incomplete � -Terms. February 11, 2004. 8

More examples

��
 �� � � �
 � � .

� ��
 �� � � �
 � � � � � � � � � � � � � �
 �
 � .

Now we can write some cases in the proof-search term. Give the

calculus pattern-matching � � . Then:

� � � �

� � �

 � � �
 .

� � � �

� � � �
 � � � � .

We should write the unification algorithm too.

Incomplete � -Terms. February 11, 2004. 9

Related work (i.e. things I knew about before or during making the
calculus)

Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, and Atsushi

Igarashi, “Calculi of Meta-variables” Computer Science Logic and 8th

Kurt Gödel Colloquium (CSL’03 & KGC), Vienna, Austria. Proceedings.

A � -calculus (two actually) using ‘levels of meta-variables’—no explicit

substitutions, with primitive � -equivalence (no� / �

 � to control

names), and instead of conditions a notion of ‘blocked’ transition in

the case of name clash. We have Nominal Rewriting.

Sylvain Baro and François Maurel, “The� � and� � calculi: name

capture and control”. Similar to the level 0 transposition- and explicit

substitution-free fragment of the calculus presented here?

Incomplete � -Terms. February 11, 2004. 10

Related work

Gueorgui Jojgov, “Tactics and Parameters”, ENCTS vol 85 issue 7. We

might implement this using our calculus.

Masatomo Hashimoto and Atsushi Ohori, “A Typed Context Calculus”. A

level 0,1 calculus. No explicit substitutions, transpositions, or� .

� -equivalence is something unorthodox taking account of the scope into

which variables may be substituted, as well as the scope of the binding

� . We use� to make scope explicit.

Cézar Muñoz, “Un Calcul de Substitutions. . . ”, PhD Thesis, Paris VII. A

program which we should be able to implement.

Incomplete � -Terms. February 11, 2004. 11

Applications of this kind of work

The Japanese: Linking. Dynamic linking. Modules (as first-class

objects).

The French and the Russians: Tactic (programming) languages,

especially for theorem provers. Dependently typed calculus.

The British: Pitts’ and others work on operational techniques for

contextual equivalence. E.g. Pitts “Operational Reasoning for Functions

on Local State”. Can these works and others be generalised to a

contextual equivalence result for data values in this calculus? If not,

what does such a result mean? Can meta-variables represent macros?

What does an “ML with holes” look like?

Incomplete � -Terms. February 11, 2004. 12

Fragments of the calculus

Also, various fragments of the calculus have interest. For example

without levels we have an explicit substitution calculus with explicit

� -equivalence. Without� (and with � -equivalence using Nominal

Renaming FM abstractions) we obtain fresh explicit substitution calculi.

Incomplete � -Terms. February 11, 2004. 13

Nominal Signatures

Fernández, Gabbay, Mackie, “Nominal Rewriting”. Critical pair theorem
and definitions of the system we used above. Fix � base data sorts
typically called� , for example integer, boolean.

A Nominal Signature � is:

1. A set of sorts of atoms typically written � .

2. A set of data sorts typically written � . � can be a base data sort or
a product:

(1) � � � � � � � � �

3. Compound (data) sorts typically written � are then defined by the

following grammar:

(2) � � � � � � � ��� � � � � � � � � �

Incomplete � -Terms. February 11, 2004. 14

Terms

Fix � . For each � fix � � term variables � � ��� � �� � . They will

represent meta-level unknowns. For each � fix � atoms

 � �
 � ��� � � � � � � � ��� � �

 . We shall drop the subscripts.

A swapping is a pair �
 �
 � � . Permutations � are lists of swappings,

write Id for the empty list. Define:

�

 � �
 �
� �	�
 �

 � �
 � �
 and �

 � �� � � � �� ��
 �
 �

 � � � � � � � � �	� � � � �� � � � � �� � �
� � �

For example
 � � �

 � � Id � � ��
 �
 � .

Nominal Terms are generated by the following grammar:

� � � �
 � � ��� � � ��� � � �� � �� � ��� 	 � � ��� � � �
 � �� � � � � � � � � � � �� � � ��

Incomplete � -Terms. February 11, 2004. 15

Terms

However we do not need abstractions to express our � -calculus, so we

excise them!

Nominal Terms without abstractions are generated by the following

grammar:

� � � �
 � �� � ��� � � �� �� �
	 � ��

Write � � � � � � � for the set of these terms over a signature � .

Incomplete � -Terms. February 11, 2004. 16

Terms

We write � for Id� � . The intuition of �

 �� � is “swap
 and
 in the

syntax of � , when it is instantiated”. These � are not the

‘meta-variables’ of the calculus which we shall define in a moment.

We shall write �

 �� � for� �	� � . This is sugar:

(3)

�

 �� � � �

 � � � � �

 �� �� �
� �

 �� � �

 �� � � �

�

 �� �� �� 	 � � �

 �� � � �

 �� � 	

An apartness condition is a pair
 � . Apartness contexts

� ��� � � �

 are finite sets of apartness conditions.
 � means “

does not occur in � , when it is instantiated”.

Incomplete � -Terms. February 11, 2004. 17

Rewrite rules

Write � ��� � and � �� � for ‘variables of’.

A nominal rewrite rule is� � � � , such that � �� ��� � �� ��� � � � � .
If� � � we may write � � .

We take rules up to permutative renaming. Thus

 � � � �

 � �� � and
 � � � �

� � � � �

 � � � �

 � �
 � and
 � � � �

 � �
 �

are ‘morally’ the same, where � � � � � � and application � � � �

are constructors in � .

Formalise morality: a set of rewrite rules � is equivariant when if

� � � then � � � � for all permutative renamings of variable symbols

and atoms.

A nominal rewrite system � � �	� � consists of: a nominal signature � ,

and an equivariant set� of nominal rewrite rules over � .

Incomplete � -Terms. February 11, 2004. 18

Rewrite rules

1.
 � � � �

 � �� � is a form of trivial � -reduction.

2.
 � � � �

 � �
 � is � -expansion.

3. Of course a rewrite rule may define any arbitrary transformation of

terms, and may have an empty context, for example

� � � � � � .

4.
 � � � �

� � is not a rewrite rule, because

� �� � � � �

� � . � � � � is also not a rewrite rule.

5. � �

 is a rewrite rule.

Incomplete � -Terms. February 11, 2004. 19

OK, done!

Without abstractions, we have a normal first-order rewriting system

enriched with: swappings �

 �� � , a well-behavedness restriction of

equivariance (which we generally kind of assume anyway), and

freshness assumptions
 � .

We are still manipulating concrete syntax trees using relatively standard

notions of matching and unification.

Incomplete � -Terms. February 11, 2004. 20

