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Encoding

We want a � -term for proof-search in First-Order Logic.

Introduce constants� ��� � � � � � � ��� � � , and� , ‘predicate constant

symbols’ � �� ��� , ‘equality’ � , and ‘term-formers’ � . Also introduce a

comma � ‘entailment’ � and pairing � - � - 	 .

We are spoilt for choice in our encoding:

� ��
 � � � 	 � � 
 
 � �

We could also use FM abstractions, but then we’d have to introduce

them into the � -calculus.

Use� � 
 
 � � and � � 
 
 � � . Discuss why later (perhaps).
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Our goal

A � -term which when applied to � � � returns ‘yes’ just if a proof

exists. We could also exhibit a � -term which constructs a proof, using

meta-variables, but that involves lists of constraints. Existential variables

are simpler and test the same principles, see below.

� -left and� -right rules have� , deadly for proof-search. Instead use an

existential variable � . � � � �	 � � �

� � � 	 
 �
At equalities� � � a unification algorithm calculates instantiations

� � � � � ; these are passed around and applied to remaining goals.

Substitution, as we shall see, is not capture-avoiding, because � may

occur under the scope of � and� binders.
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� -calculus with meta-variables

Hypothesise an infinite collection of disjoint countably infinite sets of
atoms
 � � � � . These represent variable symbols in our calculus.

The syntax is:

� � � � 
 � �� � � � 
 � 
� �� �
 � � � � �� 
 � 
�

None of these constructors bind. For example, � 
 � 

 � �	� �
 � 

 � .
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� -calculus with meta-variables
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� -calculus with meta-variables
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Swapping �
 � 
 � �� is a Nominal Rewriting primitive, it is that term

obtained by replacing every
 � by
 � , and vice-versa, in� (see

discussion in final slices).
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Examples

Write
 �
 ��� for variables of level 0, � ��� ��� for variables of level 1, and

� �� �� for variables of level 2.� for
 � clashes with the notation� for

unknown terms in the Nominal Rewriting framework; oh well.
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 � 
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More examples

�� 
 �� � � � 
 � �  .

� �� 
 �� � � � 
 � � � � � � �  � � � � � � � 
 �  
 � .

Now we can write some cases in the proof-search term. Give the

calculus pattern-matching � � . Then:

� � � �

� � � 
 
 � � � 
 .

� � � �

� � � � 
 � � � � .

We should write the unification algorithm too.
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Related work (i.e. things I knew about before or during making the
calculus)

Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, and Atsushi

Igarashi, “Calculi of Meta-variables” Computer Science Logic and 8th

Kurt Gödel Colloquium (CSL’03 & KGC), Vienna, Austria. Proceedings.

A � -calculus (two actually) using ‘levels of meta-variables’—no explicit

substitutions, with primitive � -equivalence (no� / � 
 
 � to control

names), and instead of conditions a notion of ‘blocked’ transition in

the case of name clash. We have Nominal Rewriting.

Sylvain Baro and François Maurel, “The� � and� � calculi: name

capture and control”. Similar to the level 0 transposition- and explicit

substitution-free fragment of the calculus presented here?
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Related work

Gueorgui Jojgov, “Tactics and Parameters”, ENCTS vol 85 issue 7. We

might implement this using our calculus.

Masatomo Hashimoto and Atsushi Ohori, “A Typed Context Calculus”. A

level 0,1 calculus. No explicit substitutions, transpositions, or� .

� -equivalence is something unorthodox taking account of the scope into

which variables may be substituted, as well as the scope of the binding

� . We use� to make scope explicit.

Cézar Muñoz, “Un Calcul de Substitutions. . . ”, PhD Thesis, Paris VII. A

program which we should be able to implement.
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Applications of this kind of work

The Japanese: Linking. Dynamic linking. Modules (as first-class

objects).

The French and the Russians: Tactic (programming) languages,

especially for theorem provers. Dependently typed calculus.

The British: Pitts’ and others work on operational techniques for

contextual equivalence. E.g. Pitts “Operational Reasoning for Functions

on Local State”. Can these works and others be generalised to a

contextual equivalence result for data values in this calculus? If not,

what does such a result mean? Can meta-variables represent macros?

What does an “ML with holes” look like?
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Fragments of the calculus

Also, various fragments of the calculus have interest. For example

without levels we have an explicit substitution calculus with explicit

� -equivalence. Without� (and with � -equivalence using Nominal

Renaming FM abstractions) we obtain fresh explicit substitution calculi.
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Nominal Signatures

Fernández, Gabbay, Mackie, “Nominal Rewriting”. Critical pair theorem
and definitions of the system we used above. Fix � base data sorts
typically called� , for example integer, boolean.

A Nominal Signature � is:

1. A set of sorts of atoms typically written � .

2. A set of data sorts typically written � . � can be a base data sort or
a product:

(1) � � � � � � � � � 

3. Compound (data) sorts typically written � are then defined by the

following grammar:

(2) � � � � � � � ��� � � � � � � � � � 
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Terms

Fix � . For each � fix � � term variables � � ��� � �� � . They will

represent meta-level unknowns. For each � fix � atoms


 � �
 � ��� � � � � � � � ��� � � 
 
 
 . We shall drop the subscripts.

A swapping is a pair � 
 � 
 � � . Permutations � are lists of swappings,

write Id for the empty list. Define:

� 
 
 � � 
 �
� �	� 
 � 
 
 � �
 � � 
 and � 
 
 � �� � � � �� �� 
 �
 �


 � � � � � � � � �	� � � � �� � � � � �� � �
� � �  


For example 
 � � � 
 
 � � Id � � �� 
 �
 � .

Nominal Terms are generated by the following grammar:

� � � � 
 � � ��� � � ��� � � �� � �� � ��� 	 � � ��� � � �
 � �� � � � � � � � � � � �� � � ��
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Terms

However we do not need abstractions to express our � -calculus, so we

excise them!

Nominal Terms without abstractions are generated by the following

grammar:

� � � � 
 � �� � ��� � � �� �� �
	 � ��

Write � � � � � � � for the set of these terms over a signature � .
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Terms

We write � for Id� � . The intuition of � 
 
 �� � is “swap
 and
 in the

syntax of � , when it is instantiated”. These � are not the

‘meta-variables’ of the calculus which we shall define in a moment.

We shall write � 
 
 �� � for� �	� � . This is sugar:

(3)

� 
 
 �� � � � 
 
 � � � � � 
 
 �� �� �
� � 
 
 �� � � 
 
 �� � � �

� 
 
 �� �� �� 	 � � � 
 
 �� � � � 
 
 �� � 	

An apartness condition is a pair
 � . Apartness contexts

� ��� � � � 
 
 
 are finite sets of apartness conditions.
 � means “


does not occur in � , when it is instantiated”.
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Rewrite rules

Write � ��� � and � �� � for ‘variables of’.

A nominal rewrite rule is� � �  � , such that � �� ��� � �� ��� � � � � .
If� � � we may write �  � .

We take rules up to permutative renaming. Thus


 � � � � 
 
 � ��  � and 
 � � � � 
 
� � �  � �


 � � �  � 
 
 � � 
 � and 
 � � �  �
 
 � � 
 �

are ‘morally’ the same, where � � � � �  � and application � � �  �

are constructors in � .

Formalise morality: a set of rewrite rules � is equivariant when if

� � � then � � � � for all permutative renamings of variable symbols

and atoms.

A nominal rewrite system � � �	� � consists of: a nominal signature � ,

and an equivariant set� of nominal rewrite rules over � .
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Rewrite rules

1. 
 � � � � 
 
 � ��  � is a form of trivial � -reduction.

2. 
 � � �  � 
 
 � � 
 � is � -expansion.

3. Of course a rewrite rule may define any arbitrary transformation of

terms, and may have an empty context, for example

� � � �  � � .

4. 
 � � � � 
 
�  � is not a rewrite rule, because

� �� � � � � 
 
� � . � � �  � is also not a rewrite rule.

5. � � 
  
 is a rewrite rule.
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OK, done!

Without abstractions, we have a normal first-order rewriting system

enriched with: swappings � 
 
 �� � , a well-behavedness restriction of

equivariance (which we generally kind of assume anyway), and

freshness assumptions
 � .

We are still manipulating concrete syntax trees using relatively standard

notions of matching and unification.
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