
Nominal Rewriting

Murdoch J. Gabbay
Work with Maribel Fernández and Ian Mackie

February 27, 2004

Incomplete λ-Terms. February 27, 2004. 1

Motivation

A rewrite system consists, informally speaking, of a set of terms t with

holes (meta-variables) X and rewrite rules t→t′.

So let t be terms of the λ-calculus with holes:

t ::= a | tt | λa.t | X.

Forget about what this actually means (of course I know an ‘FM-style’

approach). Can we give a rewrite rule for η-equivalence?

X → λa.(Xa)

No: this is only valid when x is not in the free variables of X , whatever

that means. We need a side-condition. Oops. Was that all my standard

theory of rewriting that just flew out the window? I do believe it was.

Incomplete λ-Terms. February 27, 2004. 2

More motivation

We have the same problems in other contexts:

a#P ` P | ν[a]Q→ ν[a](P | Q) Scope extrusion

a#t ` (λa.t)[b 7→t′]→ λa.(t[b 7→t′]) Explicit substitution

b#t ` λa.t =α λb.(t[a7→b]) α-equivalence

b#t ` λa.t =α λb.((a b) · t) α-equivalence (sans peine)

Here P , Q, t, and t′ are actually X , Y , Z , and Z ′. Note apartness

conditions a#P and swappings (a b) · t.
Super-Maribel, Super-Jamie, and Super-Ian to the rescue!

Fernández, Gabbay, Mackie, “Nominal Rewriting”, submitted. Introduces

notion of ‘nominal rewriting’ and proves critical pair theorem.

Incomplete λ-Terms. February 27, 2004. 3

Nominal Signatures

Fix S base data sorts typically called s, for example integer, boolean.

A Nominal Signature Σ is:

1. A set of sorts of atoms typically written ν.

2. A set of data sorts typically written δ. δ can be a base data sort or a

product:

δ ::= s | δ × δ.

3. Compound (data) sorts typically written τ are then defined by the

following grammar:

τ ::= ν | δ | 1 | τ × τ | [ν]τ.

Incomplete λ-Terms. February 27, 2004. 4

Examples of nominal signatures

λ-calculus (1): Add a data sort Λ and constants λ : [ν]Λ→Λ and

app : Λ× Λ→Λ.

λ-calculus (2): Add a data sort Λ and constants λ : ν × Λ→Λ and

app : Λ× Λ→Λ.

There is surprisingly little functional difference between these two

signatures, we may discuss that later. Similarly:

π-calculus (1): Data sort Π and constants res : [ν]Π→Π,

| :Π×Π→Π, in : ν × [ν]Π→Π,

π-calculus (2): Data sort Π and constants res : ν ×Π→Π,

| :Π×Π→Π, in : ν × ν ×Π→Π,

Incomplete λ-Terms. February 27, 2004. 5

Terms

Fix Σ. For each τ fix Xτ term variables Xτ , Yτ , Zτ . They will

represent meta-level unknowns. For each ν fix Aν atoms

aν , bν , cν , fν , gν , hν , We shall drop the subscripts.

A swapping is a pair (aν bν). Permutations π are lists of swappings,

write Id for the empty list.

Nominal Terms are generated by the following grammar:

t ::= aν | π ·Xτ | ∗1 | 〈tτ , t′τ ′〉τ×τ ′ | ([aν]tτ)[ν]τ | (fτ→δtτ)δ

Incomplete λ-Terms. February 27, 2004. 6

Terms

Write that again without subscripts:

t ::= a | π ·X | ∗ | 〈t, t′〉 | [a]t | f t

Write T (Σ,A,X) for the set of terms over a signature Σ.

Write X for Id ·X . Informally (a b) ·X is “swap a and b in X when

instantiated”. Informally, [a]t means “t with a bound”. This is reflected in

An apartness condition is a pair a#X . Apartness contexts

∆,∇,Γ, . . . are finite sets of apartness conditions. a#X means “a
does not occur in X , when it is instantiated”.

Incomplete λ-Terms. February 27, 2004. 7

Rewrite rules

Write V (s) and V (∇) for ‘variables of’.

A nominal rewrite rule is ∇ ` l→r, such that V (r)∪ V (∇) ⊆ V (l).

If ∇ = ∅ we may write l→r.

Our previous examples are nominal rewrite rules for appropriate

signatures. Also:

1. a#X ` (λa.X)Y→X is a form of trivial β-reduction.

2. a#X ` X→λa.(Xa) is η-expansion.

3. Of course a rewrite rule may define any arbitrary transformation of

terms, and may have an empty context, for example

∅ ` XY→XX .

4. a#Z ` Xλa.Y→X is not a rewrite rule, because

Z 6∈ V (Xλa.Y). ∅ ` X→Y is also not a rewrite rule.

5. ∅ ` a→b is a rewrite rule.

Incomplete λ-Terms. February 27, 2004. 8

Rewrite rules

X and Y can be instantiated (more later). a and b cannot. Thus a→b
does not rewrite b to a. Generally one variable symbol should be like

any other. So we consider rules up to permutative renaming:

A set of rewrite rules S is equivariant when if R ∈ S then R′ ∈ S for

all permutative renamings of variable symbols and atoms.

a#X ` (λa.X)Y→X and a#Y ` (λa.Y)X→Y,

a#X ` X→λa.(Xa) and b#X ` X→λb.(Xb)

A nominal rewrite system (Σ,R) consists of: a nominal signature Σ,

and an equivariant set R of nominal rewrite rules over Σ.

Incomplete λ-Terms. February 27, 2004. 9

Freshness #

a#s a#s′

a#〈s, s′〉

a#s

a#fs a#[a]s

a#s

a#[b]s a#b a#∗
π−1(a)#X

a#π ·X
a#t is basically a 6∈ fn(t). [a]X is the binder, π ·X permutes.

Because permutations are invertible, we can pull them to the left.

Incomplete λ-Terms. February 27, 2004. 10

Permutation action

Permutations act on atoms as follows:

(a b)(a) def= b (a b)(b) = a and (a b)(c) = c (c 6= a, b)

ds(π, π′) def=
{
n

∣∣ π(n) 6= π′(n)
}

.

For example ds((a b), Id) = {a, b}.

We shall write (a b) · t for t 6≡ X . This is sugar:

(a b) · n = (a b)(n) (a b) · ft = f(a b) · t (a b) · ∗ = ∗
(a b) · 〈s, t〉 = 〈(a b) · s, (a b) · t〉 (a b) · [n]t = [(a b)(n)](a b)t

Incomplete λ-Terms. February 27, 2004. 11

α-equivalence

∗ =α ∗ a =α a

ds(π, π′)#X

π ·X =α π′ ·X

s =α t

[a]s =α [a]t
a#t (a b) · s =α t

[a]s =α [b]t

s =α t

fs =α ft

s =α t s′ =α t′

〈s, s′〉 =α 〈t, t′〉
Matching and unification proceed as usual (see below)—except up to

=α, in a context of apartness assumptions. Thus

λ[a]λ[b]λ[a]aba =α λ[b]λ[a]λ[a]bab.

In the presence of the rule X→X , [a]a rewrites to [b]b.

Incomplete λ-Terms. February 27, 2004. 12

Technical details of the unification algorithm

A problem is a set of apartness conditions a#X and equality problems

t = t′. They are solved according to the following algorithm:

∗ ?= ∗, P → P 〈l, l′〉 ?= 〈s, s′〉, P → l ?= s, l′ ?= s′, P

fl ?= fs, P → l ?= s, P [a]l ?= [a]s, P → l ?= s, P

[b]l ?= [a]s, P → (a b) · l ?= s, b#s, P a ?= a, P → P

π ·X ?= π′ ·X, P → ds(π, π′)#X, P

a#s, P → 〈a#s〉#sol
, P (s 6≡ X)

(Matching) Y ?= s, P
Y 7→s→ P [Y 7→s]

(Unification) l ?=? X, P
X 7→l→ P [X 7→l]

〈a#s〉#sol
is the least apartness context entailing a#s.

Incomplete λ-Terms. February 27, 2004. 13

For example: a λ-calculus

(λ[a]X)X ′→X[a7→X ′] let a = X ′ in X→X[a7→X ′]

letrec fa = X ′ in X→X[f 7→(λ[a]letrec fa = X ′ in X ′)]

(XX ′)[a7→Y]→X[a7→Y]X ′[a7→Y] a[a7→X]→X a[b 7→X]→a

a#Y ` (λ[a]X)[b 7→Y]→λ[a](X[b 7→Y])

a#Y ` (let a = X ′ in X)[b 7→Y]→let a = X ′[b 7→Y] in X[b 7→Y]

f#Y, a#Y ` (letrec fa = X ′ in X)[b 7→Y]→

letrec fa = X ′[b 7→Y] in X[b 7→Y]

Incomplete λ-Terms. February 27, 2004. 14

What is a Critical Pair in Nominal Rewriting?

Write ∆ ` s→t1, t2 for the appropriate pair of rewrite judgements.

Call a valid pair ∆ ` s→t1, t2 a peak. If there exists u such that

∆ ` t1→∗u and ∆ ` t2→∗u then say the peak can be joined.

Suppose

1. Ri = ∇i ` li→ri for i = 1, 2 are two rules in R such that

V (R1) ∩ V (R2) = ∅.

2. p is a position in l1.

3. l1|p ?=? l2 has a solution (Γ, θ), so that Γ ` l1|pθ =α l2θ.

Then call the ‘pair of terms’-in-context

∇1θ,∇2θ, Γ ` (r1θ, l1[r2θ]p) a critical pair.

Incomplete λ-Terms. February 27, 2004. 15

Conclusions

Nominal Rewriting is a system very close to first-order rewriting, but the

apartness contexts let us avoid variable capture, abstractions let us

bind, and swappings let us rename atoms.

This may be useful for expressing rewrite systems on syntax with

binding!

Incomplete λ-Terms. February 27, 2004. 16

