
Extensions of Nominal Terms.

Murdoch J. Gabbay
Work with/thanks to: Maribel Fernández, Ian Mackie, Alexis

Saurin, and Antonino Salibra

March 11, 2004

Extensions of Nominal Terms. March 11, 2004. 1

Introduction

My esteemed colleague Maribel has just given an outstanding

presentation of Nominal Rewriting.

Nominal Rewriting can be described as “rewriting for Nominal

Signatures and Terms”. These were originally introduced for Nominal

Unification in work with Christian Urban and Andrew Pitts.

Extensions of Nominal Terms. March 11, 2004. 2

Nominal Signatures Σ

Fix S base data sorts typically called s, for example integer, boolean.

A Nominal Signature Σ is:

1. A set of sorts of atoms typically written ν.

2. A set of data sorts typically written δ. δ can be a base data sort or a

product:

δ ::= s | δ × δ.

3. Compound (data) sorts typically written τ are then defined by the

following grammar:

τ ::= ν | δ | 1 | τ × τ | [ν]τ.

So nominal signatures are like ordinary signatures, though some sorts

are sorts of atoms (whatever they are), and we can abstract over them

(whatever that means).

Extensions of Nominal Terms. March 11, 2004. 3

Examples of nominal signatures Σ

λ-calculus: A data sort Λ and constants λ : [ν]Λ→Λ and

app : Λ× Λ→Λ.

π-calculus (1): A data sort Π and constants res : [ν]Π→Π,

| :Π×Π→Π, in : ν × [ν]Π→Π,

Fix some Σ.

Extensions of Nominal Terms. March 11, 2004. 4

Terms

For each sort τ fix Xτ term variables Xτ , Yτ , Zτ .

For each atoms sort ν fix Aν atoms aν , bν , cν , fν , gν , hν ,

A swapping is a pair (aν bν). Permutations π are lists of swappings,

write Id for the empty list.

Nominal Terms are generated by the following grammar:

t ::= aν | ∗1 | 〈tτ , t′τ ′〉τ×τ ′ | (fτ→δtτ)δ | ([aν]tτ)[ν]τ | π ·Xτ

Again without sorts:

t ::= a | ∗ | 〈t, t′〉 | f t | [a]t | π ·X

Extensions of Nominal Terms. March 11, 2004. 5

Terms

Write X for Id ·X . Informally (a b) ·X is “swap a and b in X when

instantiated”. Informally, [a]t means “t with a bound”.

An apartness condition is a pair a#X . a#X means “a does not occur

in X , when it is instantiated”. Apartness contexts ∆,∇,Γ, . . . are finite

sets of apartness conditions.

Nominal rewriting/unification work with terms-in-context, ∇ ` s. We

get a critical pair theorem, decidable unification, most general unifiers.

It’s nice.

What? An example? The unification problem b#X ` [a]X ?=? [b]Y
has solution X = (a b) · Y . E.g. take X = ac (as might arise unifying

λ[a]ac and λ[b]bc). Then Y = bc.

Extensions of Nominal Terms. March 11, 2004. 6

Enrich the apartness context

So what next?

Enrich the contexts. Possible judgements are:

1. a#X read ‘a fresh for X ’ as before.

2. a ∈# X , meaning ‘a is not fresh for X ’. Similar to the HOAS Xa,

which says that X may use a. Useful for occurs-checks, e.g. in

ripplying and rewriting.

3. a ∈1 X meaning ‘a occurs precisely once in X ’.

4. a ∈≤1 X .

5. ev(X) meaning X contains no (unabstracted) at all; ‘is closed’.

Extensions of Nominal Terms. March 11, 2004. 7

Enrich the apartness context

An apartness context ∇ is now a conjunction of disjunctions. Example

deduction rules are:

a ∈# t ∨ a ∈# t′

a ∈# 〈t, t′〉
a ∈1 t a#t′

a ∈1 〈t, t′〉
a ∈≤1 t a#t′

a ∈≤1 〈t, t′〉
ev(t)
a#t

a ∈≥1 is not so easy, what is the deduction rule for judgements of the

form a ∈≥1 [a]t?

The nice thing is that this is entirely technical: work out what the

deduction rules must be, verify that a known list of lemmas and

algorithms is not broken (culminating in a decidable algorithm for

calculating MGUs). No imagination required.

Extensions of Nominal Terms. March 11, 2004. 8

Summary

“Nominal Terms (in context)” equals “first-order analysis of

α-conversion”. Associated is a semantics FM sets (Schanuel topos),

so we even have a useful sanity check.

This can be applied to:

1. Unification (Nominal Unification).

2. Rewriting (Nominal Rewriting).

3. Universal Algebra (We know what to do).

Note that via the FM semantics, any universal algebra theory

automatically gets a semantics for free. Let’s look at this more closely.

Extensions of Nominal Terms. March 11, 2004. 9

An nominally universal algebraic theory for the λ-calculus

So let’s look at a Nominal Universal Algebra theory. One sort of atoms ν
and one data sort Λ. The signature has three constructors:

[-7→-] : [ν]Λ× Λ→Λ λ : [ν]Λ→Λ app : Λ× Λ→Λ

Axioms of substitution:

a[a7→X] = X X[a7→a] = X a#X ` X[a7→X ′] = X

a#X ′′ ` X[a7→X ′][b 7→X ′′] = X[b 7→X ′′][a7→(X ′[b 7→X ′′])]

Distributivity axioms:

` (XX ′)[a7→Y] = (X[a7→Y])(X ′[a7→Y])

a#X ′ ` (λ[a]X)[b 7→X ′] = λ[a](X[b 7→X ′])

Other axioms:

(β) λ([a]X)X ′ = X[a7→X ′] (η) a#X ` X = λ[a](Xa)

Extensions of Nominal Terms. March 11, 2004. 10

Lambda-abstraction algebras by Salibra

Theorems of Nominal Universal Algebra (yet to be proved) say “any

model is a homomorphic image of a subalgebra of a direct product of

the free term algebra”.

Already done for signature above: Salibra’s Lambda Abstraction

Algebras. Who knows what else is out there.

1. Is the category of models of the algebraic theory of the

λ/π-calculus above cartesian closed?

2. What is it for a class of algebras to be ‘Turing

complete/computationally non-trivial’.

3. In this context, what is an ‘evaluation function’.

4. What is the behaviour of nominal unification/rewriting modulo

nominal equational theories?

Let’s look at the last point.

Extensions of Nominal Terms. March 11, 2004. 11

Extend equalities

Consider the Nominal Unification algorithm modulo fragments of

theories such as that for substitution and λ above. How decidable are

those fragments? MGUs? Relation to HO unification and friends?

Difference from existing work: we have the apartness contexts, so we

can work ‘modulo equalities in context ’.

Extensions of Nominal Terms. March 11, 2004. 12

Extend atoms

Finally, we can extend atoms. For every sort of atoms ν take another

sort of atoms νω representing a countably infinite stream of distinct

atoms.

I have developed the semantics for this. What happens to nominal

terms? There are functions cons : ν × νω→νω and deduction rules

such as
a#α

a#b :: α

Here is a signature for the λµ-calculus (recent work with Alexis Saurin):

tΛ[aν 7→t′Λ] t{ανω
7→t′νω

} λ[a]t tt′ µ[α]t tα.

This raises the strange question of what sense, if any, does adding a

theory of streams of atoms make nominal terms ‘classical’?

Extensions of Nominal Terms. March 11, 2004. 13

Conclusions

Nominal Terms (in apartness context) give a framework to analyse

α-equivalence.

1. We can probably enrich the contexts to analyse ‘occurs’ properties.

2. I claim that substitution is precisely what makes β-reduction (and

computation) difficult to express algebraically. Therefore, nominal

terms are a good place to analyse computation!

3. Put another way, it is interesting to investigate nominal terms up to

nominal equational theories; computationally (unification, matching)

as well as mathematically (algebras, categories).

4. Other interesting extensions are possible, such as streams of

atoms, and they are not gratuitous, in the sense that surprising

connections exist with other work.

Extensions of Nominal Terms. March 11, 2004. 14

