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Nominal Terms

To manipulate syntax, e.g. Logic, Unification, or Rewriting, it is useful to

have abstract syntax with names and binding. E voilà Nominal Terms:

Terms t ::= ∗ | a | π · X | 〈t, t〉 | ct | [a]t.

Permutations π ::= Id | (a b) ◦ π

a, b, . . . ∈ A are atoms, they behave (almost) like constant symbols of

ground type. c are constructors. Swappings act (a b)(n) as

(a b)(a)
def
= b (a b)(b) = a and (a b)(c) = c (c 6= a, b).

and this action extends elementwise to permutations π.

(a b) · n = (a b)(n) (a b) · ct = c(a b) · t (a b) · ∗ = ∗

(a b) · 〈s, t〉 = 〈(a b) · s, (a b) · t〉 (a b) · [n]t = [(a b)(n)](a b)t

(a b) · (π · X) = (a b) ◦ π · X.
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Substitution

(π · X)[X 7→ s] = π · s (π · Y )[X 7→ s] = π · Y

〈t, t′〉[X 7→ s] = 〈t[X 7→ s], t′[X 7→ s]〉

(ct)[X 7→ s] = c(t[X 7→ s])

([a]t)[X 7→ s] = [a](t[X 7→ s]) a[X 7→ s] = a

For example,

〈(a b) · X,X〉[X 7→ a] ≡ 〈b, a〉 ([a]X)[X 7→ a] ≡ a.

≡ denotes syntactic identity.
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Expressivity

1. Programming: Lambda[a]t, App〈t, t′〉. Write λa.t and tt′.

2. Logic: All[a]t, Exist[a]t, Imp〈t, t′〉, . . . Similarly, ∀a. t.

Proof that λa.λb.ab =
α

λb.λa.ba:

a#λa.ba

a =
α

a b =
α

b

ab =
α

ab

λb.ab =
α

(b a) · (λa.ba) ≡ λb.ab

λa.λb.ab =
α

λb.λa.ba

What’s this?
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α-equality and freshness

a#s1 · · · a#sn

a#〈s1, . . . , sn〉

a#s

a#cs

a#s

a#[b]s a#b a#[a]s

π-1(a)#X

a#π · X

s1 =
α

t1 · · · sn =
α

tn

〈s1, . . . , sn〉 =
α
〈t1, . . . , tn〉

s =
α

t

c s =
α
c t a =

α
a

t =
α

t′

t′ =
α

t

s =
α

t

[a]s =
α

[a]t

a#t s =
α

(a b) · t

[a]s =
α

[b]t

ds(π, π′)#X

π · X =
α

π′ · X

ds(π, π′)
def
=

{

n
∣

∣ π(n) 6= π′(n)
}

.

For example, ds((a b), Id) = {a, b}. Compare with same-variable

flex-flex case in Higher-Order Patterns X as = X bs.
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Simple logic

We have a simple logic of freshness and α-equality.

Let a freshness context be a (possibly empty) list of assertions of the

form a#X . Write Γ ` a#t when a#t may be deduced using

elements of Γ as assumptions.

Let a equality problem be s =
α

t. Similarly write Γ ` s =
α

t.

Lemma: Γ ` a#t and Γ ` s =
α

t is decidable.

Proof: By the structural nature of the rules.
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Simple algorithm for the logic

Let a unification problem U be a list of freshness and equality problems.

Logically simplify problems according to the rules described,

U  U ′. If no simplification is possible say the problem is stuck.

Lemma: Problem reduction  is strongly normalising and confluent.

Proof: By the purely structural nature of the rules.

Lemma: The only problems in a stuck unification problem are of the form

a#X , π · X =
α

t, and t =
α

π · X , where X does not appear in t.

Proof: By consideration of the rules.

Of course a stuck problem is precisely the context necessary to deduce

the original problem.
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Matching, Unification, MGUs

• Freshness simplification: a#X, U
a#X
 U .

• Matching simplification:

π · X =
α

t, U
X 7→π

-1
·t

 U [X 7→ π-1 · t].

• Unification simplification:

t =
α

π · X, U
X 7→π

-1
·t

 U [X 7→ π-1 · t].

A solution to U is a context Γ of a#X and θ a substitution, such that

Γ ` Pθ for every P ∈ U .

Theorem: The algorithm implicit above gives most general solutions

(MGUs). (Matching, Unification)

Proof: In [“Nominal Unification”, with Urban and Pitts].
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For example

1. [a]X =
α

[b][a]ba logically simplifies to X =
α

[b]ab, then matching

simplifies to the empty problem emitting the substitution

X 7→ [b]ab.

2. [a]X =
α

[b]X logically simplifies to a#X and X =
α

(a b) · X
and logically simplifies further to a#X and b#X . This freshness

reduces to the empty problem emitting the freshness context a#X

and b#X .

3. More examples. . .
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Extensions of nominal terms

Let’s build a logic from these pieces. Terms are as before. Formulae are:

F ::= ⊥ | F ∧ F | F ∨ F | F ⇒ F | ∃a. F | ∀a. F

| s =
α

t | a#t | p t

Here p are predicate atoms.

We can express:

• ∀a. a#X ⇒ pX “p holds of X if it is closed”.

• ∀n. ((n =
α

a ∨ n =
α

b) ⇒ ⊥) ⇒ n#X “fv(X) ⊆ {a, b}”.

• ∀a. a#X ⇒ a#Y “fv(Y ) ⊆ fv(X)”.

• ∀a. a#X ⇒ rewrites(〈X,Y 〉, 〈Y, Y 〉) “if the first element of

the pair is closed, rewrite as shown”.

rewrites is a predicate atom.
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Extensions of nominal terms

We would expect some theorems to hold:

• Weakening. Admissible rule:
Γ ` C

Γ, P ` C

• Equality. s =
α

t ∧ a#s ⇒ a#t should succeed for any a, s, t.

• Equality again. X =
α

Y ∧ a#X ⇒ a#Y should be a theorem.

• Substitution. Admissible rule:
Γ ` C

Γ[X 7→ t] ` C[X 7→ t]
X is not a variable symbol! It is a term.

E.g. admissibility of this rule is a corollary of weakening and

equalities, since we can weaken with X =
α

t.

• ∀a. ∃b. p〈a, b〉 ⇒ ∃b. ∀a. t〈a, b〉 should fail.

• Cut-elimination, . . .
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First-Order Logic rules

Γ, P,Q ` C

Γ, P ∧ Q ` C

Γ ` P Γ ` Q

Γ ` P ∧ Q

Γ, P ` Q

Γ ` P ⇒ Q

Γ ` P Γ, Q ` C

Γ, P ⇒ Q ` C Γ, P ` P Γ,⊥ ` C

∧

a∈S

(

Γ ` P [n 7→a]
)

Γ ` ∀n. P

Γ, P ` C

Γ,∀a. P ` C

Γ ` P Γ, P ` Q

Γ ` Q

Γ, P, P ` C

Γ, P ` C
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Freshness rules

Γ, a#t, a#t′ ` C

Γ, a#〈t, t′〉 ` C

Γ ` a#t, a#t′

Γ ` a#〈t, t′〉

Γ, a#t ` C

Γ, a#c t ` C

Γ ` a#t

Γ ` a#c t

Γ, a#[a]t ` C

Γ ` C

Γ, a#t ` C

Γ, a#[b]t ` C

Γ ` a#t

Γ ` a#[b]t

Γ, π−1(a)#X ` C

Γ, a#π · X ` C

Γ ` π−1(a)#X

Γ ` a#π · X
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α-equality rules I of II

Γ, ∗ =
α
∗ ` C

Γ ` C

Γ, a =
α

a ` C

Γ ` C
Γ, a =

α
b ` C

Γ, s =
α

t ` C

Γ, [a]s =
α

[a]t ` C

Γ ` s =
α

t

Γ ` [a]s =
α

[a]t

Γ, a#t, s =
α

(a b) · t ` C

Γ, [a]s =
α

[b]t ` C

Γ ` a#t Γ ` s =
α

(a b) · t

Γ ` [a]s =
α

[b]t
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α-equality rules II of II

Γ ` ds(π, π′)#X

Γ ` π · X =
α

π′ · X

Γ, ds(π, π′)#X ` C

Γ, π · X =
α

π′ · X ` C

Γ[X 7→π−1 · t] ` C[X 7→π−1 · t]

Γ, t =
α

π · X ` C
(X 6∈ t)

Γ[X 7→π−1 · t] ` C[X 7→π−1 · t]

Γ, π · X =
α

t ` C
(X 6∈ t)

(〈t, t′〉 rules omitted to save space)
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Compact reformulation of =
α

and # rules; definitions style

a#〈t, t′〉 ≡ a#t ∧ a#t′ a#ct ≡ a#t a#[a]t ≡ >

a#[b]t ≡ a#t a#π · X ≡ π-1(a)#X

∗ =
α
∗ ≡ > a =

α
a ≡ > a =

α
b ≡ ⊥

[a]s =
α

[b]t ≡ a#t ∧ s =
α

(a b) · t a =
α
〈t, t′〉 ≡ a =

α
t ∧ a =

α
t′

Γ[X 7→π−1 · t] ` C[X 7→π−1 · t]

Γ, t =
α

π · X ` C
(X 6∈ t)

Γ[X 7→π−1 · t] ` C[X 7→π−1 · t]

Γ, π · X =
α

t ` C
(X 6∈ t)
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Cut elimination

Theorem: Cut is admissible in the system without it.

Proof: By lots of lemmas.

The spirit of the underlying technical is that the equality rules together

implement a Miller-Tiu-style equality ‘rule’:

∧

θ : sθ=
α

tθ

(

Γθ ` Cθ
)

Γ, s =
α

t ` C

Here θ varies over closing substitutions so sθ =
α

tθ is a proof in the

simple logic of equality and freshness.

Nominal Terms, Existential Variables, and Mathematics. May 4, 2004. 17



Expressivity

1. Closure and explicit control of free variables: As already

commented, e.g. ∀n. (n =
α

a ⇒ ⊥) ⇒ n#a, or

∀n. n#X ⇒ n#Y .

2. Predicate atoms: Add binary predicate atom ? and definitions

a?〈t, t′〉 ≡ (a?t ∧ a#t′) ∨ (a#t ∧ a?t′)

a?c t ≡ a?t a?[a]t ≡ ⊥

a?[b]t ≡ a?t a?π · X ≡ π-1(a)?X

This expresses ‘occurs exactly once in’; a form of linearity.
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Logical simplifications

A problem U is a set of sequents Γ ` C . Logical simplifications

U  U ′ are given by the sequent system.

Lemma: Logical simplifications are strongly normalising.

Proof: By the structural nature of the rules.

Logical simplifications are not confluent, because of ∨ and ∃. However

in their absence I believe this is true.

From now on, everything is blue sky.
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Other simplifications

• Freshness. Γ ` a#X, U
a#X
 (Γ, a#X) ∪ U .

• Matching. Γ ` π · X =
α

t, U
X 7→π

-1
·X

 Γ ∪ U .

• Unification. Γ ` t =
α

π · X, U
X 7→π

-1
·X

 Γ ∪ U .

Here Γ ∪ U denotes the problem containing Γ, ∆ ` C for every

∆ ` C in U .

We seem to need to add Γ to get confluence.
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Directions

Hypothesis: Simplifications are strongly normalising and confluent.

We can consider some cases on the board.

Hypothesis: Solving an ordinary nominal unification problem

(a#t, s =
α

t) is equivalent to solving (∅ ` a#t, ∅ ` s =
α

t) in

this new sense.

Hypothesis: Add a binary atomic predicate →; do axioms exist that

hijack the theory of equality to do matching, giving rewriting for free?
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Conclusions

This logic is expressive and unknowns are first-class terms. Equality on

the left is first-class substitution. Equality on the right may fail logically,

but ‘forcing’ it gives unification.

We express relations between universal variables a, b, c and existential

variables X,Y,Z . This enables us to write ∀-right rules and also the

=
α

-left rules.

Miller and Tiu have ∇-quantified variables for a and ordinary variables

for X . The substitution [X 7→ t] gives some flavour of Higher-Order

techniques. Note we have explicit atoms a for which a 6=
α

b when a and

b are syntactically non-identical (c.f. definitions).

Limitations and future work: (On the board: no λ-abstraction,

quantification only over atoms.)
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Mathematics (set theory?)

I propose a flavour of ZFA with two sorts of urelemente; atoms a, b, c

and (moderated) unknowns π · X,π · Y, π · Z .

Substitution action is as for terms but distributes over set-{−}.

We have the following additional axioms:

∀x. Na. v(x) = ∅ ⇒ a#x

∀x. NX. X#x
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Mathematics (algebra)

Algebraic version: a set with a permutation action (a b) and substitution

action [X 7→ x]. Properties (axioms?) include:

1. (a b) · (y[X 7→ x]) = ((a b) · y)[X 7→ x]

2. y[X 7→ X] = y.

3. X#y ` y[X 7→ x] = x.

4. X#x′ ` y[X 7→x][X ′ 7→x′] = y[X ′ 7→x′][X 7→x[X ′ 7→x′]].
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Types (briefly)

Sort(s) of atoms ν.

Base sorts s.

Data sorts δ ::= s | δ × δ.

Compound sorts τ ::= ν | δ | 1 | τ × τ | [ν]τ .

Nominal Terms, this time with types:

t ::= aν , bν , cν , . . . | (π · (Xδ))δ | ∗1

| 〈tτ , t′τ ′〉τ×τ ′ | ([aν ]tτ )[ν]τ | (fτ→δtτ )δ
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