Fresh Logic

Murdoch J. Gabbay
Work with James Cheney
Also including work with Lucian Wischik in the Appendix

May 14, 2004

resh Logic. May 14, 2004.

We want to , and about abstract syntax with variable
symbols, and its operational behaviour (and its denotation too if we're
feeling brave!).

Fresh Logic is First-Order Logic (with equality) enriched with, a sort of
atoms A, a swapping term-former swap_ : A—A—7—7, afreshness
predicate symbol # : A X 7, and a Vl-quantifier quantifying over
variables of sort A.

We use l/ to create fresh atoms, swap to rename ‘stale’ atoms, and #
to say when a ‘stale’ atom is actually fresh.

That's it. We write # infix and write swapxyt as (x y)t.

resh Logic. May 14, 2004.

1. x, an atom.

2. - (xy)xr = y a derivable equality judgement.
3. x#x F L aderivable judgement.

4. x#y = x#y another derivable judgement.

5. F Nx. x = z ditto.

6. — Vx. x# 2 you guessed it.

7. = (xy)z = x not derivable; we don't use atoms-as-constants
(aac) but atoms-as-variables (aav).

resh Logic. May 14, 2004.

Terms are defined by the following grammar:
s,t,a,bu=x|c|Av.t|tt

Here c are constructors, for example swap, or perhaps (-, -) for pairing;
the sort system puts terms in the right type, variables x are assumed
sorted a la Church.

Predicates are defined by the following grammar:

P,Q,R:=p(ts) | P\P|PVP|PDP|
T|L|Ve. P|3dx. P| VNx. P

Equality = and freshness # are predicate constant symbols (the ps).

resh Logic. May 14, 2004.

Deduction Rules i

(Ax) (LL) (TR)
IPFP Il FC TFT

' - PI' FQ IP,Q F C
(AR) (AL)
' PAQ ILPAQ F C

- P I Q IP-C I.OFC
(\/Rl) (\/Rg) (\/l
I PvQ I PvQ I.PVQF C

resh Logic. May 14, 2004. 5

Deduction Rules ii

resh Logic. May 14, 2004.

I''PF Q@ I' - PILQ F C
(DR) (DL)
I' - P=Q I''P=@QFC
I' = P I, P{t/z} - C
(VR) (VL)
I' H Va. P ['Vx. P - C
= P+ C
I' - P{t/x} ER) an)

I' = dx. P [''dx. P F C

Deduction Rules iii

r'-P I.PFQ I PPFC
(Cut) (C'tret)
I' - Q P +C
I't=t+ C Lt =t¢,P{t'/z} - C
(=Ref) (=Sub)

' C It =t,P{t/z} - C

resh Logic. May 14, 2004.

Deduction Rules iv

['a#ts = P{a/n}
I'a#ts = Un. P

(NR) (P = P'[n,ts])

I',a#ts, P{a/n} + C
I',a#ts, In. P = C

(NL) (P = P'[n,ts])

resh Logic. May 14, 2004.

Deduction Rules v

I',n#ts = C
I' = C

(newh) (ngV(I[',C,ts))

I'Na#tb - C T'a=bF C A
r - O (caseh) I'a#a - C (#A)

T,(ab)yt=tF P I,P+C

T L
I', attt, b#t - P (%) ['(ab)-P F C(W)

resh Logic. May 14, 2004.

Deduction Rules vi

Example deductions (D1) and (D2)

(Az)
n#Fxr kb n#x

(D1) n#zx bk Vln.n#x(MR)
(newA).

- Un.n #x

(=Ref), (Ax)

(wL)
n#xrx,m#Fzrn#FEmbE (nm) r=x

NR
(D2) n#az,m#x,n#ml—Mm.(nm)-x:m()
(NR)

(newA), (newl).

n#Frm#FrnHFEmbEr==x

n#x,m#Frn#FmbkE Mn.Wm.(nm) - z==x

F Nn.m. (nm) -z =x

resh Logic. May 14, 2004. 11

Interlude: Slices

A slice of P over n is atuple (P, n,ys, P’ ts) of P, a variable symbol
n, and:

1. Variable symbols v/, . . ., Yy which we write ys, not appearing in P
2. A proposition P" with V(P’) = {n,y1,..., Yk}

3. Terms tq, ..., t; which we write ts, such that n ¢ U]f V(t;) and

resh Logic. May 14, 2004.

12

Slices (examples)

1. p(f(x,n), m) sliced over n is
(p(f(:z:,n), m)?”» (ylayQ)vp(f(ylv n)v y2)7 (337 m))

2. p(f(x,n), m) sliced over m is
(p(f(:c,n),m),m, (yl)vp(ylam)v f(xan))

There is a natural notion of minimal slice P = P’|n, ts], the (unique up
to renaming the ys) slice such that P’ is as small and the s are as
large as possible. Both slices above are minimal.

Lemma: If P = P’[n,ts] then for any term s,

P{s/n} = P'{s/n}{ts/ys}. Also, for any n and s such that

n & V(s), P{s/z} = P'|n,ts{s/x}|.

Thus a substitution for n in P does not affect the ¢s, and minimality of

slices over 1 is not affected by substitutions that do not introduce free
occurrences of n.

resh Logic. May 14, 2004. 13

Example deductions (D3)

(D3)

resh Logic. May 14, 2004.

Ak A(Am) B+ B(Ax)
(AR)

n# V(A B), A, B+ AAB
vr)
n# V(A B), AWn.B+- AANB L)
NL
n#V(A,B),VIn.A,VIn.BI—A/\B()
AL
n# V(A B), Un.A,VIn. B+ AAB
R)

n# V(A B), In. A,\ViIn. B + Nn.(AAB)
(newh)
Nn. A,Vin. B - NUn. (AN B)
NIn. ANWUn. B - Wn. (AN B)

(AL).

14

Example deductions (D4) and (D5)

(Ax) (Ax)
n#Fr bk n#x PrP
(OL)
n#xr=P n#x,vs - P
(D4) (NL), (VL)
In.Ve.n# x= P, n# x,vs - P
(newA), (WR)

In.Ve.n#x= P F Vn. P
(VR)
n.Ve.n# = P + Vx. n. P

)

#)
(MWR), (newA)

(na)-z=x F (na)-x==
a#rn#zxrk (na)-z=x
a#xtH Nn (na)-x==x

NS
S

(D5)

resh Logic. May 14, 2004.

15

Example deductions (D6)

(Az)
a#xr tH a#cx

(na)-a# (na)-(na)-x F a#=x
(D6) n# (na) -z - a#x

(~)
(mL)
(=Sub)
(ML)
(newA)

n#zx,(na)-r=x F a#x
n# x,a,n.(na) - x=x + a#x
n.(na)-z=x F a#x

resh Logic. May 14, 2004. 16

Logic programming can be viewed as a form of uniform derivation. A
derivation is uniform if for all subderivations of judgements whose
conclusion is not atomic (I = p(ts) is not such), the final rule is a

right-rule or (newA).

A logic programming language based on Fresh Logic is a subset of the
judgements such that an element of that subset is derivable if and only if

it has a uniform derivation.

resh Logic. May 14, 2004.

17

Uniform logic programming langauge

For example a hereditarily Horn clause language

G == T|plts)| GANG|Tz.G | Nn.G
D == Tlplts)| DAND|G>DD
| Vz.D | WUn.D

and a hereditarily Harrop clause language

G == T|plts)| GANG|Tz.G | Nn.G
| Va.G|GVG|DDG
D == Tlpts)| DAND|GDD

| Vz.D | Un.D

resh Logic. May 14, 2004.

18

FOLN

(X,h); T F o> Alho/x]

Y:I' F o> V2. A
Yoot Y:T o Alt/z] F C

(VR) (h ¢ %)

(VL)
Y: 1oVt A F C
Yoot YT F op Alt/x]
(FR)
Y:I' F o>driT A
(X,h); T, 0> Alho/x] - C
S :Topdr.A b C QL) (hg)
X:I' F (o,y)> Aly/x]
:I'F o> Va.A (VE) (u¢ o)
I, (o,y)> Aly/z] F C
— (V) (y¢0)

:I'orVz.AF C

resh Logic. May 14, 2004.

19

Translation into Fresh Logic

We enrich the signature with constants n., : A—7 for each 7, and we

write ev(h) for Vn. n#th.

[tl, = 1
[Pel, = I[Pl,=[Ql, (®<c{AV,D})
V1P|, = Vhiro—t.ev(h) D|P| {ho/z}
Bx:r.P||, = 3hir,—T.ev(h) A|P] {ho/x}
Va:r.Pl|, = WxA[P], {n-z/z}

[[JDP]] = Wo:A.|P]_{no/o}

resh Logic. May 14, 2004.

20

Fresh Logic could be a valid logic programming environment. The
translation of FOLN suggests a relationship between HOAS and FM

techniques, as well as (automatically) giving one semantics to the
former. How about a HOAS-type logic with V' and # used intead of V

and local contexts.

resh Logic. May 14, 2004. 21

Ap

pendix: more on the translation

(* pi-calculus ala MIler and Tiu,
del egating function types directly to FreshOCanml *)

type atom = unit nane;;

type proc = Nl

| Snd of atomratonmfproc | Rcv of atonfr
| Par of proc*proc | New of

| Rep of proc;;

|l et rec subs a b p = match p with

Snd(x, vy, p) -> Snd(subsA a b x,subsA a b y,subs a b p)
| Rev(x,f) -> Rev(subsA a b x,
function n -> let nE in subs mb ((swap mand a in f) n))

(* Here we ensure that n is nabla-quantified by
explicitly renamng a to mto avoid clash *)

| Par(pl, p2)
| New(f)

| et nE

->
->
I N

Par (subs a b pl,subs a b p2)
New(function n ->
subs mb ((swap mand a in f) n))

(* Here we ensure that n is nabla-quantified by
explicitly renamng a to mto avoid clash *)

| Rep(p)
| Nl
and subsA a b x

resh Logic. May 14, 2004.

->
->

Rep(subs a b p)
Ni |
| f x=a then b else x::

22

Appendix: more on the translation

In symbols,

New(f)a—b] = New ()xn.VIm. ((m a) f)n)[m— b]).

resh Logic. May 14, 2004.

23

