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Sentiments

LICS’99 in Trento was my first international conference. It left me with a

particular affection for LICS. I am happy to be back!

Since then I have met many people. Some invited me to visit in

universities all over the world. Thank you.

James Cheney should be here. He has two other papers at this

conference.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 2



Q. Which is worse: ignorance or apathy?

A.Whoknows,whocares?

Please ask questions. I would.

This will be a simple talk. . .
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. . . here it is in one slide

• Slogan: Names are a datatype.

• Question 1: What are the introduction and elimination rules for
its elements?

• Question 2: What logic programming languages arise from
them?

Roughly speaking, in the literature ‘Nominal’ refers to the Slogan, and

‘Fresh’ refers to Question 1.
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Take α-equivalence on names (variable symbols in abstract syntax)

λf, a. fa ≡
α

λa, f. af Untyped λ-calculus

fix a. S ∪
⋃

a ≡
α

fix b. S ∪
⋃

b Typed λ-calculus

∃b. ∀a. a = b ≡
α

∃a. ∀b. b = a Logic

a[b].bb ≡
α

a[c].cc π-calculus

a[a7→b] ≡
α

c[c7→b] Explicit substitution (?)
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Add substitution and freshness

Operational semantics and logical deduction (and structural

congruence, . . . ) introduce notions of substitution. . .

(λa.s)t  s[a7→t]

aa | a[b].bb  bb

Γ, P [a7→t] ` C

Γ,∀a. P ` C
(a fresh)

. . . and freshness to the mix:

(λb.λa.b)a  λa′.a

aa | ν[a]ba  aa | ba′

x = x ` x′ = y

x = x ` (∀x. x = y)

Also in tandem, e.g. a reduction in an explicit substitution calculus

requiring a capture-avoiding renaming (λa.b)[b7→a]  λa′.a.

Choose your favourite example.
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Add unknowns

When we consider Rules, we also need unknowns:

Γ ` P (a)

Γ ` ∀a. P (a)
(a fresh)

C[P ]  C[P ′]

C[ν[a]P ]  C[P ′]
(a fresh)

u[a7→X][b7→Y ] ≡
α

u[b7→Y ][a7→X[b7→Y ]] (a fresh for Y )

(λa.X)[b7→Y ]  λa.(X[b7→Y ]) (a fresh)

(λa.X)[b7→Y ]  λa′.((a′ a)X[b7→Y ]) (a′ fresh)
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Is this simple? Not really.

Given that names are a datatype, that’s a, b, c, what do we have?

Consider a canonical problem:

(λa.X)[b7→Y ]  λa′.((a′ a)X[b7→Y ]) (a′ fresh).

Conundrum 1: How is a renamed to a′ in the unknown X? Conundrum

2: How is a′ fresh for the unknown Y ?

We need to answer these questions in order to give a logic for
specifying rules on syntax in which names are a datatype.

This is Nominal Logic.
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Sorts and terms of (Sequent) Nominal Logic

Assume a sort system τ with function sorts τ→τ . Assume a sort of

atoms A. (Names are a datatype.)

Terms are simply-typed λ-terms

s, t, a, b, . . . ::= x | c | λx.t | t t′.

Call terms of sort A atoms and write them a, b, a′, f, g, etc.

Constants c may have any sort. Assume swapτ : A→A→τ→τ for

each sort τ . Abbreviate swapτ a a′ t to (a a′)·t and call it a swapping

of a and a′ applied to t. That addresses conundrum 1.

The rest is standard. Identify ≡βη-terms. V (t) is free variables as

usual. t[x7→s] is capture-avoiding as usual.
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Expressivity

We can express object-level syntax using terms. E.g. assume sort Λ
and constructors Var : A→Λ, App : Λ→Λ→Λ, Lam : A→Λ. Then

• Vara is ‘the variable a’.

• Appxx′ is ‘the unknown λ-term x applied to the unknown λ-term

x′’.

• LamfLamaApp(Varf)(Vara) is ‘λf, a.fa’.

• (a b) · x is ‘swap a and b in the unknown λ-term x’.
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Propositions or formulae

P ::= p(ts) | P ∧ P | P ∨ P | P ⇒ P

| > | ⊥ | ∀x. P | ∃x. P | Nn. P.

p, q, r are predicate constant symbols each with an arity τ1 · · · τn (i.e.

the list of sorts of arguments). Assume equality = : ττ and freshness

# : Aτ .

The rest is standard. V (P ) and P [x7→s] as usual. Equate

α-equivalent formulae as usual.

The intuition of Nn. P (n) is ‘P holds of a fresh n’. The semantics is

‘P holds of cofinitely many n’, that addresses conundrum 2.

Also a propos conundrum 2, we can state individual freshnesses using

the predicate constant a#x.
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Expressivity

Recall the sort Λ. Abuse notation and write Vara as a, Apptt′ as tt′,
and Lamat as λa.t. We can now express alpha-equivalence as a

relation ≡
α
: ΛΛ given by formulae

a ≡
α

a

t ≡
α

t′ ∧ s ≡
α

s′ =⇒ st ≡
α

s′t′

(

Nn. (n a) · t = (n a′) · t′
)

=⇒ λa.t ≡
α

λa′.t′.
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Expressivity

Introduce Sub : Λ→A→Λ→Λ and sugar it to t[a7→t′]. We can

express operational semantics  : ΛΛ:

(λx.s)t  s[x7→t] (ss′)[x7→t]  s[x7→t]s′[x7→t]

Nn.
(

(λa.u)[x7→t]  λn.((n a) · u)[x7→t]
)
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Freshness and New

We can reexpress using #:

a ≡
α

a t ≡
α

t′ ∧ s ≡
α

s′ =⇒ st ≡
α

s′t′

n#t, t′ ∧ (n a) · t = (n a′) · t′ =⇒ λa.t ≡
α

λa′.t′

(λx.s)t  s[x7→t] (ss′)[x7→t]  s[x7→t]s′[x7→t]

n#a, u, x, t =⇒ (λa.u)[x7→t]  λn.((n a) · u)[x7→t]

Notice that these are all Horn.
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Relation of Nand #

The following are theorems of Nominal Logic:

∀x. Nn. n#x

Nn. P (n, xs) ⇐⇒ ∀n. n#xs ⇒ P (n, xs)

Nn. P (n, xs) ⇐⇒ ∃n. n#xs ∧ P (n, xs).

Here V (P ) = {n, xs} and n#xs denotes a conjunction of freshness

assertions.

These say “You can always generate a fresh atom” and “If something

holds of some fresh atom, it holds of all fresh atoms”. Useful for proofs,

see ‘equivariance’ in the next slide.
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Taking stock

We have a logic with built-in names a, b, c : A, renaming (a b),

freshness #, and new name N. It has useful meta-theoretic properties:

• If Γ ` C then Γ[x7→t] ` C[x7→t]. (Substitution Lemma)

• Cut is an admissible rule. (Cut-elimination)

• If Γ ` C then Γ ` (a b) · C . (Equivariance)

The last rule means that if you know C (an inductive hypothesis, say),

then it is safe to suppose also (a b) · C . Suppose C(a) is ‘λa.a is a

normal form’. Then we know ‘λb.b is a normal form’.

It is an axiom that if Γ ` a#x and Γ ` b#x then

Γ ` x = (a b) · x. Therefore if we can prove a and b fresh for

parameters in C , we can freely deduce C(b) from C(a). This is ‘we

assume a is fresh’.
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Timeline (or: suggested reading)

2001 Gabbay thesis introduces FM sets. FreshML project implements

operational semantics for it based on ML.

2001 Pitts Nominal Logic introduces Hilbert-style axiomatisation of # and

N. Uses Atoms-as-constants (AAC).

2003 Gabbay Fresh Logic introduces Natural-Deduction style system for

# and N, with proof-normalisation and sound and complete

semantics (in FM sets). Uses AAC.

2004 A Sequent Calculus for Nominal Logic introduces Sequent-style

system with cut-elimination, and also demonstrates it as a logic

programming language. Uses Atoms-as-variables (AAV).

Also of relevance: Nominal Unification by Urban, Pitts,and Gabbay, and

Nominal Rewriting by Fernández, Gabbay, and Mackie.
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Deduction rules

Γ, n#ts ` C
(newA) (n 6∈ V (Γ, C))

Γ ` C

Γ, a#ts ` P{a/n}
( NR) (P ≡ P ′[n, ts])

Γ, a#ts ` Nn. P

Γ, a#ts, P{a/n} ` C
( NL) (P ≡ P ′[n, ts])

Γ, a#ts, Nn. P ` C
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Deduction rules

(newA)says “we can always introduce a fresh atom; call it n and say

‘it’s fresh”’.

( NL)and ( NR)are symmetric so we consider just ( NR). The best way

of understanding this rule is to consider the case when every t in ts is

an x. Then:

Γ, a#xs ` P [n7→a]

Γ, a#xs ` Nn. P
(V (P ) = {n, xs})

The more complex form is obtained just by observing that, for good

meta-theoretic properties, we want the deduction rules to each be

closed under substituting ts for xs. We do not want to assume n ≡ a
since the ts might contain a. It is a bit like the existential right rule.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 19



Deduction rules

Γ, a#b ` C Γ, a = b ` C
(caseA)

Γ ` C

(#A)
Γ, a#a ` C

Γ, (a b)·t = t ` P
(π#)

Γ, a#t, b#t ` P

Γ, P ` C
(πL)

Γ, (a b)·P ` C

In Hilbert-style these say:

a#b ∨ a = b ¬(a#a)

a, b#t ⇒ (a b) · t = t (a b) · P =⇒ P.
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Deduction rules

Finally, there are some equational rules:

Γ, A ` C
(AL) (A ∈ A)

Γ ` C

A =



















(a a)·t = t, (a b)·(a b)·t = t

(a b)·a = b, (a b)·c = c,

(a b)·[t u] = [(a b)·t] [(a b)·u],

(a b)·λx.t = λx.(a b)·[t{(a b)·x/x}]
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Logic programming (Horn)

First-order nominal Horn clause goals and program clauses:

G ::= > | p(ts) | G ∧ G | ∃x.G | Nn.G

D ::= > | p(ts) | D ∧ D | G ⊃ D

| ∀x.D | Nn.D

The N-free fragment is essentially Horn clauses.

Uniform proof search applies just right-rules or (newA) until the goal is

atomic, then just left-rules or (newA). The above is a logic

programming language: if D ` G is derivable then a uniform

derivation exists.

Note that (newA) may be applied at any point. This is technically

necessary because it cannot be permuted up past (∃R): the witness t
may mention the fresh variable generated by (newA).
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Logic programming (Harrop)

First-order nominal hereditary Harrop goals G and program clauses D:

G ::= > | p(ts) | G ∧ G | ∃x.G | Nn.G

| ∀x.G | G ∨ G | D ⊃ G

D ::= > | p(ts) | D ∧ D | G ⊃ D

| ∀x.D | Nn.D

This is also a logic programming language.

Adding atomic freshness and equality goals is no problem for uniform

proof search since it does not comment on how atomic goals are to be

derived.
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Conclusions and future work (apologies to Cheney, Pitts, and
Others)

This paper explores some of the consequences of taking names as a

datatype. There are many more:

• (Cheney) Efficient logic programming and implementation.

• (Pitts) Semantic/denotational methods to prove program properties,

using nominal domains.

• (Gabbay) Complex holes: What languages, logics, calculi, and

semantics, arise from contexts and unknowns C[X], for which

substitution is not capture-avoiding? What are unification and

rewriting in the presence of the above, or closure conditions (‘t is

closed’ instead of just freshness a#t), e.g. for closed rewriting.

• (Others: Urban, Fernández, Shinwell, following paper . . . ) I’m in the

happy position of having to confess that I’m losing track.
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So someone asked ‘why not use name-for-name substitution’

We use swappings (a b) instead of substitutions [a7→b] because it is

easier to logic program a theory for α-equivalence using it. Thus:

a 6= b

a#b

a#s, t

a#st
a#λa.t

a#t a 6= b

a#λb.t

a ≡
α

a
s ≡

α
s′ t ≡

α
t′

st ≡
α

st′

s ≡
α

t

λa.s ≡
α

λa.t

s ≡
α

(a b) · t b#s

λa.s ≡
α

λb.t

This said, a theory based on substitutions is possible [Gabbay,

unpublished].

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 25


