
A Sequent Calculus for Nominal Logic

Murdoch J. Gabbay
Work with James Cheney

July 15, 2004

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 1

Sentiments

LICS’99 in Trento was my first international conference. It left me with a

particular affection for LICS. I am happy to be back!

Since then I have met many people. Some invited me to visit in

universities all over the world. Thank you.

James Cheney should be here. He has two other papers at this

conference.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 2

Q. Which is worse: ignorance or apathy?

A.Whoknows,whocares?

Please ask questions. I would.

This will be a simple talk. . .

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 3

. . . here it is in one slide

• Slogan: Names are a datatype.

• Question 1: What are the introduction and elimination rules for
its elements?

• Question 2: What logic programming languages arise from
them?

Roughly speaking, in the literature ‘Nominal’ refers to the Slogan, and

‘Fresh’ refers to Question 1.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 4

Take α-equivalence on names (variable symbols in abstract syntax)

λf, a. fa ≡
α

λa, f. af Untyped λ-calculus

fix a. S ∪
⋃

a ≡
α

fix b. S ∪
⋃

b Typed λ-calculus

∃b. ∀a. a = b ≡
α

∃a. ∀b. b = a Logic

a[b].bb ≡
α

a[c].cc π-calculus

a[a7→b] ≡
α

c[c7→b] Explicit substitution (?)

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 5

Add substitution and freshness

Operational semantics and logical deduction (and structural

congruence, . . .) introduce notions of substitution. . .

(λa.s)t s[a7→t]

aa | a[b].bb bb

Γ, P [a7→t] ` C

Γ,∀a. P ` C
(a fresh)

. . . and freshness to the mix:

(λb.λa.b)a λa′.a

aa | ν[a]ba aa | ba′

x = x ` x′ = y

x = x ` (∀x. x = y)

Also in tandem, e.g. a reduction in an explicit substitution calculus

requiring a capture-avoiding renaming (λa.b)[b7→a] λa′.a.

Choose your favourite example.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 6

Add unknowns

When we consider Rules, we also need unknowns:

Γ ` P (a)

Γ ` ∀a. P (a)
(a fresh)

C[P] C[P ′]

C[ν[a]P] C[P ′]
(a fresh)

u[a7→X][b7→Y] ≡
α

u[b7→Y][a7→X[b7→Y]] (a fresh for Y)

(λa.X)[b7→Y] λa.(X[b7→Y]) (a fresh)

(λa.X)[b7→Y] λa′.((a′ a)X[b7→Y]) (a′ fresh)

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 7

Is this simple? Not really.

Given that names are a datatype, that’s a, b, c, what do we have?

Consider a canonical problem:

(λa.X)[b7→Y] λa′.((a′ a)X[b7→Y]) (a′ fresh).

Conundrum 1: How is a renamed to a′ in the unknown X? Conundrum

2: How is a′ fresh for the unknown Y ?

We need to answer these questions in order to give a logic for
specifying rules on syntax in which names are a datatype.

This is Nominal Logic.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 8

Sorts and terms of (Sequent) Nominal Logic

Assume a sort system τ with function sorts τ→τ . Assume a sort of

atoms A. (Names are a datatype.)

Terms are simply-typed λ-terms

s, t, a, b, . . . ::= x | c | λx.t | t t′.

Call terms of sort A atoms and write them a, b, a′, f, g, etc.

Constants c may have any sort. Assume swapτ : A→A→τ→τ for

each sort τ . Abbreviate swapτ a a′ t to (a a′)·t and call it a swapping

of a and a′ applied to t. That addresses conundrum 1.

The rest is standard. Identify ≡βη-terms. V (t) is free variables as

usual. t[x7→s] is capture-avoiding as usual.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 9

Expressivity

We can express object-level syntax using terms. E.g. assume sort Λ
and constructors Var : A→Λ, App : Λ→Λ→Λ, Lam : A→Λ. Then

• Vara is ‘the variable a’.

• Appxx′ is ‘the unknown λ-term x applied to the unknown λ-term

x′’.

• LamfLamaApp(Varf)(Vara) is ‘λf, a.fa’.

• (a b) · x is ‘swap a and b in the unknown λ-term x’.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 10

Propositions or formulae

P ::= p(ts) | P ∧ P | P ∨ P | P ⇒ P

| > | ⊥ | ∀x. P | ∃x. P | Nn. P.

p, q, r are predicate constant symbols each with an arity τ1 · · · τn (i.e.

the list of sorts of arguments). Assume equality = : ττ and freshness

: Aτ .

The rest is standard. V (P) and P [x7→s] as usual. Equate

α-equivalent formulae as usual.

The intuition of Nn. P (n) is ‘P holds of a fresh n’. The semantics is

‘P holds of cofinitely many n’, that addresses conundrum 2.

Also a propos conundrum 2, we can state individual freshnesses using

the predicate constant a#x.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 11

Expressivity

Recall the sort Λ. Abuse notation and write Vara as a, Apptt′ as tt′,
and Lamat as λa.t. We can now express alpha-equivalence as a

relation ≡
α
: ΛΛ given by formulae

a ≡
α

a

t ≡
α

t′ ∧ s ≡
α

s′ =⇒ st ≡
α

s′t′

(

Nn. (n a) · t = (n a′) · t′
)

=⇒ λa.t ≡
α

λa′.t′.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 12

Expressivity

Introduce Sub : Λ→A→Λ→Λ and sugar it to t[a7→t′]. We can

express operational semantics : ΛΛ:

(λx.s)t s[x7→t] (ss′)[x7→t] s[x7→t]s′[x7→t]

Nn.
(

(λa.u)[x7→t] λn.((n a) · u)[x7→t]
)

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 13

Freshness and New

We can reexpress using #:

a ≡
α

a t ≡
α

t′ ∧ s ≡
α

s′ =⇒ st ≡
α

s′t′

n#t, t′ ∧ (n a) · t = (n a′) · t′ =⇒ λa.t ≡
α

λa′.t′

(λx.s)t s[x7→t] (ss′)[x7→t] s[x7→t]s′[x7→t]

n#a, u, x, t =⇒ (λa.u)[x7→t] λn.((n a) · u)[x7→t]

Notice that these are all Horn.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 14

Relation of Nand #

The following are theorems of Nominal Logic:

∀x. Nn. n#x

Nn. P (n, xs) ⇐⇒ ∀n. n#xs ⇒ P (n, xs)

Nn. P (n, xs) ⇐⇒ ∃n. n#xs ∧ P (n, xs).

Here V (P) = {n, xs} and n#xs denotes a conjunction of freshness

assertions.

These say “You can always generate a fresh atom” and “If something

holds of some fresh atom, it holds of all fresh atoms”. Useful for proofs,

see ‘equivariance’ in the next slide.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 15

Taking stock

We have a logic with built-in names a, b, c : A, renaming (a b),

freshness #, and new name N. It has useful meta-theoretic properties:

• If Γ ` C then Γ[x7→t] ` C[x7→t]. (Substitution Lemma)

• Cut is an admissible rule. (Cut-elimination)

• If Γ ` C then Γ ` (a b) · C . (Equivariance)

The last rule means that if you know C (an inductive hypothesis, say),

then it is safe to suppose also (a b) · C . Suppose C(a) is ‘λa.a is a

normal form’. Then we know ‘λb.b is a normal form’.

It is an axiom that if Γ ` a#x and Γ ` b#x then

Γ ` x = (a b) · x. Therefore if we can prove a and b fresh for

parameters in C , we can freely deduce C(b) from C(a). This is ‘we

assume a is fresh’.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 16

Timeline (or: suggested reading)

2001 Gabbay thesis introduces FM sets. FreshML project implements

operational semantics for it based on ML.

2001 Pitts Nominal Logic introduces Hilbert-style axiomatisation of # and

N. Uses Atoms-as-constants (AAC).

2003 Gabbay Fresh Logic introduces Natural-Deduction style system for

and N, with proof-normalisation and sound and complete

semantics (in FM sets). Uses AAC.

2004 A Sequent Calculus for Nominal Logic introduces Sequent-style

system with cut-elimination, and also demonstrates it as a logic

programming language. Uses Atoms-as-variables (AAV).

Also of relevance: Nominal Unification by Urban, Pitts,and Gabbay, and

Nominal Rewriting by Fernández, Gabbay, and Mackie.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 17

Deduction rules

Γ, n#ts ` C
(newA) (n 6∈ V (Γ, C))

Γ ` C

Γ, a#ts ` P{a/n}
(NR) (P ≡ P ′[n, ts])

Γ, a#ts ` Nn. P

Γ, a#ts, P{a/n} ` C
(NL) (P ≡ P ′[n, ts])

Γ, a#ts, Nn. P ` C

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 18

Deduction rules

(newA)says “we can always introduce a fresh atom; call it n and say

‘it’s fresh”’.

(NL)and (NR)are symmetric so we consider just (NR). The best way

of understanding this rule is to consider the case when every t in ts is

an x. Then:

Γ, a#xs ` P [n7→a]

Γ, a#xs ` Nn. P
(V (P) = {n, xs})

The more complex form is obtained just by observing that, for good

meta-theoretic properties, we want the deduction rules to each be

closed under substituting ts for xs. We do not want to assume n ≡ a
since the ts might contain a. It is a bit like the existential right rule.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 19

Deduction rules

Γ, a#b ` C Γ, a = b ` C
(caseA)

Γ ` C

(#A)
Γ, a#a ` C

Γ, (a b)·t = t ` P
(π#)

Γ, a#t, b#t ` P

Γ, P ` C
(πL)

Γ, (a b)·P ` C

In Hilbert-style these say:

a#b ∨ a = b ¬(a#a)

a, b#t ⇒ (a b) · t = t (a b) · P =⇒ P.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 20

Deduction rules

Finally, there are some equational rules:

Γ, A ` C
(AL) (A ∈ A)

Γ ` C

A =

(a a)·t = t, (a b)·(a b)·t = t

(a b)·a = b, (a b)·c = c,

(a b)·[t u] = [(a b)·t] [(a b)·u],

(a b)·λx.t = λx.(a b)·[t{(a b)·x/x}]

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 21

Logic programming (Horn)

First-order nominal Horn clause goals and program clauses:

G ::= > | p(ts) | G ∧ G | ∃x.G | Nn.G

D ::= > | p(ts) | D ∧ D | G ⊃ D

| ∀x.D | Nn.D

The N-free fragment is essentially Horn clauses.

Uniform proof search applies just right-rules or (newA) until the goal is

atomic, then just left-rules or (newA). The above is a logic

programming language: if D ` G is derivable then a uniform

derivation exists.

Note that (newA) may be applied at any point. This is technically

necessary because it cannot be permuted up past (∃R): the witness t
may mention the fresh variable generated by (newA).

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 22

Logic programming (Harrop)

First-order nominal hereditary Harrop goals G and program clauses D:

G ::= > | p(ts) | G ∧ G | ∃x.G | Nn.G

| ∀x.G | G ∨ G | D ⊃ G

D ::= > | p(ts) | D ∧ D | G ⊃ D

| ∀x.D | Nn.D

This is also a logic programming language.

Adding atomic freshness and equality goals is no problem for uniform

proof search since it does not comment on how atomic goals are to be

derived.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 23

Conclusions and future work (apologies to Cheney, Pitts, and
Others)

This paper explores some of the consequences of taking names as a

datatype. There are many more:

• (Cheney) Efficient logic programming and implementation.

• (Pitts) Semantic/denotational methods to prove program properties,

using nominal domains.

• (Gabbay) Complex holes: What languages, logics, calculi, and

semantics, arise from contexts and unknowns C[X], for which

substitution is not capture-avoiding? What are unification and

rewriting in the presence of the above, or closure conditions (‘t is

closed’ instead of just freshness a#t), e.g. for closed rewriting.

• (Others: Urban, Fernández, Shinwell, following paper . . .) I’m in the

happy position of having to confess that I’m losing track.

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 24

So someone asked ‘why not use name-for-name substitution’

We use swappings (a b) instead of substitutions [a7→b] because it is

easier to logic program a theory for α-equivalence using it. Thus:

a 6= b

a#b

a#s, t

a#st
a#λa.t

a#t a 6= b

a#λb.t

a ≡
α

a
s ≡

α
s′ t ≡

α
t′

st ≡
α

st′

s ≡
α

t

λa.s ≡
α

λa.t

s ≡
α

(a b) · t b#s

λa.s ≡
α

λb.t

This said, a theory based on substitutions is possible [Gabbay,

unpublished].

A Sequent Calculus for Nominal Logic July 15, LICS’2004. 25

