
Nominal Rewriting Systems

Murdoch J. Gabbay
Work with Maribel Fernández and Ian Mackie

August 26, Verona, PPDP’2004

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 1

The talk in a slide:

• Rewriting is an encompassing framework for expressing logic
and computation. Real logics and computing languages (e.g.
FOL, λ-calculus) have binding (α/β-equivalence).
β-equivalence is undecidable, can cause problems in
higher-order systems.

• We have a decidable theory of α-equivalence, based on
Fraenkel-Mostowski sets.

• Cross it with a first-order theory of rewriting.

• Get a theory of Nominal Rewriting—decidable, and with
binding.

• Verify some good properties of the system (critical pairs
lemma, linear time decidability, as expressive as Combinatory
Rewriting).

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 2

In more detail:

Urban, Pitts, and Gabbay presented a decidable linear time unification

algorithm for Nominal Terms.

Nominal terms are similar to first-order terms but the theory of equality

is not just literal equality on syntax trees, but α-equivalence ≈α with

respect to a special abstraction operator (examples below) on atoms

a, b, c ∈ A, written [a]t.

Nominal terms may contain unknowns X (representing unknown

nominal terms). These may occur under abstraction [a]X . The

unification algorithm finds a substitution σ of Xs for ss in t and t′ such

that tσ ≈α t′σ.

Nominal Rewriting is a natural extension of first-order rewriting with

respect to nominal terms and the matching algorithm obtained by

rewstricting nominal unification. The payoff is a first-order-like treatment

of binding in syntax.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 3

Signatures and Sorts

A Nominal Signature Σ is some sorts of atoms ν, base data sorts s

(e.g. N, B), and function symbols f of arity τ1→τ2. If τ1 is an empty

product say f is 0-ary (i.e. a constant) and omit the arrow.

Term sorts are inductively defined by:

τ ::= ν | s | τ × . . . × τ | [ν]τ.

τ1 × . . . × τn is a product sort. [ν]τ is an abstraction sort. Terms are

defined in the next slide, but first an example:

A nominal signature for a fragment of ML has one sort of atoms ν, one

sort of data exp, and function symbols with arities

var : ν→exp app : exp × exp→exp

lam : [ν]exp→exp let : exp × [ν]exp→exp

letrec : [ν](([ν]exp) × exp)→exp

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 4

Terms

Fix Σ. For each τ fix countably infinite term variables X,Y,Z ∈ Xτ

meta-level unknowns. For each ν fix countably infinite atoms

a, b, c, f, g, h, . . . ∈ Aν object-level variable symbols.

Nominal Terms are:

t ::= aν | (π · X)τ | 〈t1τ1
, . . . , tnτn

〉
τ1×...×τn

|

([aν]tτ)[ν]τ | (fτ1→τ2
tτ1

)τ2

and called resp. atoms, moderated variables, tuples, abstractions and

function applications. Ground terms are terms without variables.

a is abstracted in [a]t, not under [a]- it is free.

These terms have a notion of position as usual in first-order rewriting,

only the position of X in π · X is ε.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 5

For example

For our example Σ, write

a for var(a)

tt′ for app〈t, t′〉

λ[a]t for lam([a]t)

let a=t in t′ for let〈t, [a]t′〉

letrec (fa)=t in t′ for letrec[f]〈[a]t, t′〉.

a, (λ[a]aa)(λ[a]aa), and letrec (fa) =a in fb are terms.

f is abstracted in t and t′, and a in t, in letrec f a=t in t′.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 6

Swappings

(a b) a swapping is a pair of atoms. Permutations π ::= Id | (a b) · π
are lists of swappings. (Id is the identity.)

Swappings (and thus permutations) act on atoms

(a b)(a)
def
= b (a b)(b)

def
= a and (a b)(c)

def
= c (c 6= a, b).

The action extends to terms:

(a b)(X) = (a b) · x (a b)[n]t = [(a b)(n)](a b)(t)

Syntactic equality ≡ is not modulo α-equivalence: [a]a 6≡ [b]b.

We develop an explicit theory of α-equivalence in context.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 7

Fresh

a#s1 · · · a#sn

a#〈s1, . . . , sn〉

a#s

a#fs

a#s

a#[b]s

a#b a#[a]s

π−1(a)#X

a#π · X

Write ∆ for a set of apartness assumptions a#X . Write ∆ ` a#s

when assumptions ∆ prove a#s.

a#X ` a#〈X, [a]Y 〉

a#X, b#X ` a#〈(a b) · X, (b c) · Y 〉

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 8

≈α, a notion of α-equivalence in context

s1 ≈α t1 · · · sn ≈α tn

〈s1, . . . , sn〉 ≈α 〈t1, . . . , tn〉

s ≈α t

fs ≈α ft a ≈α a

t ≈α t′

t′ ≈α t

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

ds(π, π′)#X

π · X ≈α π′ · X

ds(π, π′) =
{

a
∣

∣ π(a) 6= π′(a)
}

the difference set.

Write ∆ ` s ≈α t when ∆ proves s ≈α t.

a, b#X ` (a b) · X ≈α X

b#X ` λ[a]X ≈α λ[b](b a) · X

The matching/unification algorithms invert these rules and include a

substitution step to solve X ≈α t. We omit details.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 9

Terms-in-context

Because the useful notion of equality, ≈α, is in a context, we work with

terms-in-context Γ ` t. For example:

1. ∅ ` a.

2. a#X ` [a]X .

3. a#X, b#Y ` 〈X,Y 〉.

We may write ∅ ` t as just t.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 10

Rewrite rules

Write V (s) for X ∈ X mentioned in s and A(s) for atoms mentioned

in s (free or abstracted). Similarly write V (∇).

A nominal rewrite rule over Σ is a tuple (∇, l, r), we write it

∇ ` l→r, such that V (r) ∪ V (∇) ⊆ V (l).

We may write l→r for ∅ ` l→r.

• a#X ` (λ[a]X)Y →X is a form of trivial β-reduction.

• a#X ` X→λ[a](Xa) is η-expansion.

• XY →XX is strange but quite valid.

• a→b is a rewrite rule.

• a#Z ` Xλ[a]Y →X is not a rewrite rule; Z 6∈ V (Xλ[a]Y).

X→Y is also not a rewrite rule.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 11

Examples

We discuss matching, then rewriting, in a moment. Here are some

examples:

1. X rewrites with ∅ ` X→〈X,X〉 to 〈X,X〉.
Y rewrites to 〈Y, Y 〉.

2. a rewrites with ∅ ` a→a to a. b does not rewrite.

3. a#X ` 〈X,X〉 rewrites with a#Z ` 〈Z,Z〉→〈Z, a〉 to

〈Z, a〉. 〈X,X〉 does not rewrite, neither does 〈a, b〉, but

a#X ` 〈b,X〉 rewrites to 〈b, a〉.

4. [a]a rewrites with ∅ ` [b]b→[b]c to [a]c, to [b]c, and [d]c, but not

[c]c. The former are all provably α-equivalent in the context ∅.

a#X ` [a]X also rewrites with the same rule to [a]c.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 12

Matching

Call a term in context a pair Γ ` t.

A matching problem is a pair of them, (∇ ` l) ?= (∆ ` s).

A solution is a substitution θ such that

• θX ≡ X for X in V (∆ ` s).

• ∆ ` lθ ≈α s.

• ∆ ` ∇θ.

If a solution exists then a most general one is the θ from (θ,Γ) solving

l ?= s.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 13

Rewriting

Given R = ∇ ` l→r say s rewrites with R to t, in a context ∆, or

just ∆ ` s
R
→ t, when:

• V (R) ∩ V (∆, s) = ∅ (wlog).

• There exists a position p in s and a solution θ to

(∇ ` l) ?= (∆ ` s|p).

• ∆ ` s[rθ]p ≈α t.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 14

Two basic lemmas of ≈α, and a corollary

Lemma: If ∆ ` t ≈α s|p then ∆ ` s[t]p ≈α s.

Lemma: If ∆ ` t ≈α t′ and if p is a position in s, then

∆ ` s[t]p ≈α s[t′]p.

E.g. ∅ ` [a]a ≈α [b]b and ∅ ` [a][a]a ≈α [a][b]b.

If s ≈α s′ and t ≈α t′ it is not necessarily the case that

s[t]p ≈α s′[t′]p. For example, [a]a ≈α [b]b and a ≈α a but

[a]a 6≈α [b]a.

Corollary: The latter two conditions defining ∆ ` s
R
→ t can be

expressed succinctly as (∇ ` (s[l]p, s[r]p)) ?= (∆ ` (s, t)) for

some p.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 15

Critical pair lemma

Call a valid pair of rewrites ∆ ` s→t1, t2 a peak.

Suppose

1. Ri = ∇i ` li→ri for i = 1, 2 are copies of two rules in R such
that V (R1) ∩ V (R2) = ∅ (R1 and R2 could be copies of the
same rule).

2. p is a position in l1.

3. l1|p ?=? l2 has a solution (Γ, θ), so that Γ ` l1|pθ ≈α l2θ.

Then call the pair of terms-in-context

∇1θ,∇2θ,Γ ` (r1θ, l1[r2θ]p)

a critical pair. If p = ε and R1, R2 are copies of the same rule, or if p is
the position of a variable in l1 then we say the critical pair is trivial.

Theorem: If all critical pairs are joinable, then rewriting is locally
confluent.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 16

Simulating Combinatory Reduction Systems (CRS)

First, note that Nominal Rewriting contains First-Order rewriting, just by

omitting abstraction [a]t and moderations π · X .

CRS can be encoded with a little more effort. Fix some CRS over an

alphabet A. Define a nominal signature ΣA with one sort of atoms (ν),

one sort of data (δ), the term sorts generated from these, and a set of

function symbols which contains the function symbols of the CRS R and

a new function symbol sub representing substitution, which we sugar to

t[a7→s] and more generally to t[a1 7→s1, . . . , an 7→sn].

We obtain a nominal rewriting system R.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 17

Examples of the translation

β-reduction in the CRSs syntax is:

app(lambda([a]Z(a)), Z ′) → Z(Z ′)

The translation is:

a#Z ′ ` app(lambda([a]Z), Z ′) → Z[a7→Z ′]

A CRS rule defining a differentiation operator is:

diff([a]sin(Z(a))) → [b]mult(app(diff([c]Z(c)), b), cos(Z(b)))

The translation is:

b, c#Z ` diff([a]sin(Z)) →

[b]mult〈app〈diff([c]Z[a7→c]), b〉, cos(Z[a7→b]〉)

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 18

Soundness and completeness

The translation is sound, and complete. Soundness is modulo rewriting

some substitutions (CRS elide β-reduction steps). Completeness is

direct.

Theorem: Let t be a term in a CRS R (and therefore also in R). If

` t →R u then there exists u′ such that ` u →∗

R
u′ and t →R u′.

Theorem: Let t and u be arbitrary terms in the CRS R (and therefore

also in R). If t →R u then ` t →∗

R
u.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 19

Closed rewriting (briefly)

We have not discussed closed rewriting for efficiency in the presence of

equivariance: under certain reasonable reasonableness conditions

rewriting is linear time decidable even if the system is equivariant and

therefore has infinitely many rules, such as a → a, b → b, . . .

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 20

Conclusions

Main results so far:

• Nominal Rewriting has a critical pair lemma,

• is linear time decidable,

• and is as expressive as CRS (the translation of a CRS is reasonable

in the sense above).

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 21

Future work

• Extend these results to a framework that can express more complex

apartness conditions than a#X ; for example ‘X closed’.

• Prove more powerful confluence results, including criteria on rewrite

rules for global confluence.

• Include a Nterm-former to generate atoms on-the-fly.

• Consider generalization and Inductive Logic Programming.

Nominal Rewriting Systems August 26, Verona, PPDP’2004. 22

