
Theorem

A NEW calculus of contexts

Murdoch J. Gabbay

Paris, INRIA and PPS, 1/2005

Thank you for fitting me in on short notice!

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 1

The issue

Context=‘term with a hole’. E.g. C[-] = λx.[-].

[-] may be filled, e.g. C[t] = λx.t, in a capturing manner, e.g.

C[x] = λx.x.

This is not modelled by β-reduction since it avoids capture; consider

(λy.λx.y)x ∗ λx′.x.

Our vision: suppose a hierarchy of levels of variables of increasing

strength. Abstraction and application are (more-or-less) as before.

However, substitution for a variable avoids capture for variables of the

same strength or stronger, and does not avoid capture for weaker

variables.

For example, if x is weak (level 1, say) and X is stronger (level 2, say),

then (λX.λx.X)x λx.x.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 2

The issue

Problem: α-equivalence.

If λx.X = λy.X then (λX.λx.X)x λx.y. This would be bad!

Dropping α-equivalence entirely is too drastic. Some

capture-avoidance, as in (λy.λx.y)x, should be legitimate.

Our answer: Separate scope (λ) and binding (N). Introduce freshness

context to manage their interaction. Also use explicit substitution,

because it is easy to express the reductions.

Result: Not solely a ‘calculus for contexts’, but also a calculus with good

meta-properties and unexpected expressivity including things we might

not have expected to have anything to do with contexts.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 3

Syntax

Suppose countably infinite set of disjoint infinite sets of variables

ai, bi, ci, ni, . . . for i ≥ 1. Say ai has level i. Syntax is given by:

s, t ::= ai | tt | λai.t | t[ai 7→t] | Nai.t.

Call s[ai 7→t] an explicit substitution, λai.t an abstraction, and Nai.t a

binder.

Terms are equated up to binding by Nand nothing else.

Call a variable bj stronger than another ai when j > i (when it has

strictly higher level). b3 is stronger than a1.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 4

Example terms and reductions

Let x, y, z have level 1 and X,Y,Z have level 2.

(λx.x)y x[x7→y] y Ordinary reduction

(λx.X)[X 7→x] λx.(X [X 7→x]) λx.x Context substitution

x[X 7→t] x X stronger than x

x[x′ 7→t] x Ordinary substitution

x[x7→t] t Ordinary substitution

X[x7→t] 6 Suspended substitution

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 5

More on suspensions: substitution-as-a-term

Let t have level 3.

X[x7→t][X 7→x] X[X 7→x][x7→t[X 7→x]]

 x[x7→t[X 7→x]] t[X 7→x].

bj [ai 7→t] with i < j is a strong hole bj waiting to be filled so a weaker

ai can substitute in it.

[ai 7→t] is not a term and cannot be made an argument of a function.

Using suspensions we can express it:

λX.(X[x7→y]) encodes [x7→y].

Reduction is not possible because X is stronger than x. Contrast this

with λX.(X [X 7→y]), which reduces in one step to λX.y.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 6

Example of substitution-as-a-term

Let true ≡ λx, y.x, false ≡ λx, y.y, and Id ≡ λx.x.

f takes a substitution-as-a-term, a truth value, and an argument, and

applies the substitution or not according to the truth value:

f ≡ λx, y, z.(yxId)z

For example:

f (λX.X[x7→y]) true x ∗ true(λX.X[x7→y])Idx

∗ (λX.X [x7→y])x ∗ X[x7→y][X 7→x] ∗ y

Similarly, f (λX.X[x7→y]) false x ∗ x.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 7

Nand freshness

λ does not bind. It is an abstractor but not a binder. So we introduce N

to get α-equivalence (so, intuitively, Nx.λx.blah is what we

traditionally understand by ‘lambda x blah’).

(Nscope-extrudes like in the π-calculus. λ stays put!)

So consider λX. Ny.λy.(X [y 7→0]).

Here, y is generated inside the function call, so we should know y is not

in X — and reduce to λX. Ny.λy.X .

Freshness contexts y#X take care of that. We assume rewrites occur

in a context of freshness information with enough fresh variables to

satisfy all our needs. Because Nbinds, we can rename y to some fresh

variable which the context says is fresh for X . We then proceed.

Confused? Let’s make sure you are. . .

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 8

Reduction rules

(β) (λai.s)u s[ai 7→u]

(σa) ai[ai 7→u] u ∀c. c#ai⇒c#u

(σ#) s[ai 7→u] s ai#s

(σp) (ait1 . . . tn)[bj 7→u] (ai[bj 7→u]) . . . (tn[bj 7→u])

(σσ) s[ai 7→u][bj 7→v] s[bj 7→v][ai 7→u[bj 7→v]] j>i

(σλ) (λai.s)[ck 7→u] λai.(s[ck 7→u]) ai#u, ck k≤i

(σλ′) (λai.s)[bj 7→u] λai.(s[bj 7→u]) j > i

(σtr) s[ai 7→ai] s

(Np) (Nnj .s)t Nnj .(st) nj 6∈t

(Nλ) λai. Nnj .s Nnj .λai.s nj 6=ai

(Nσ) (Nnj .s)[ai 7→u] Nnj .(s[ai 7→u]) nj 6∈u nj 6=ai

(N6∈) Nnj .s s nj 6∈s

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 9

WHY??

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 10

Semantics

Here is a fun NEW calculus of contexts program (hope you like it):

s = λX.((X[x7→y])(X[y 7→x])).

Observe s(xy) ∗ (yy)(xx).

Thus, the hierarchy of variables allows us to ‘inject’ terms into positions

where their variables with be captured, either by a lambda or by an

explicit substitution.

Well yes, that’s what you’d expect of a (λ-)calculus of contexts, really —

isn’t it?

We can use this power to model many things.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 11

Records

A record is bj [a
1
i1
7→t1] · · · [a

n
in

7→tn] where j > ik for 1 ≤ k ≤ n.

In words, a record is a set of substitutions suspended on a ‘big hole’ bj .

Let’s be concrete. R = X[l 7→tl][p7→tp] stores tl at l and tp at p.

We retrieve tl with [X 7→l] and update it with [X 7→X[l 7→newval]].

Call Nλa3.a3[X 7→l] record lookup at l and Nλa3.a3[X 7→X[l 7→t′l]]
record update at l.

(Nλa3.a3[X 7→l])R
(β)
 Na3.a3[X 7→l][a3 7→R]

(σσ),(σa)

∗ Na3.R[X 7→l]
(σσ)

∗ Na3.l[l 7→tl[X 7→l]][p7→tp[X 7→l]]
(σa),(N#)

∗ tl[X 7→l].

Similar reductions for record update.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 12

Protected records

In-place update is also possible. E.g. [X 7→X[l 7→l + 1]] (or as a term,

Nλa3.a3[X 7→X[l 7→l + 1]]) adds 1 to tl in-place.

Note that X is free in R. If we do not like that, we can use protected

records.

R′ = NλX.(X[l 7→tl][p7→tp]).

Protected record lookup at l is encoded by Nλa3.a3l and protected

record update at l by Nλa3. NλX.a3(X[l 7→t′l]).

Note there is no possibility of substitution for some stronger variable

than X being captured by λX , because it is protected by N, which

explicitly marks the scope of X .

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 13

Global state, and object-oriented programming

in the sense of general references and Abadi-Cardelli imp-ε
respectively, are easy to encode. For details, see the paper.

Possible applications to the theory of both, e.g. applicative

characterisation of contextual equivalence obtained from a theorem

which holds of the NEW context calculus (in the paper, a non-trivial

result). This is speculative but if it works, it would be great because that

kind of theorem is generally very hard.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 14

Partial evaluation

Write

if = λa, b, c.abc true = λab.a false = λab.b

not = λa.if a false true.

in untyped λ-calculus. Then calculate

s = λf, a.if a (f a) a specialised to s not

by β-reduction. We obtain λa.if a (not a) a.

A more intelligent method may recognise that the program will always

return false (with types etc.).

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 15

Partial evaluation

Choose level 1 variables a, b and level 2 variables and B,C and define

true = λab.a false = λab.b

if = λa,B,C. a(B[a7→true])(C[a7→false])

not = λa.if a false true.

So if we get to B, a = true. Consider

s = λf, a.if a (f a) a specialised to s not.

We obtain:

s not
∗ λa.a ((notB)[a 7→true][B 7→a]) (C[a7→false][C 7→a])

∗ λa.a ((nota)[a7→true]) (a[a7→false])

∗ λa.(a false false).

More efficient!

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 16

Other applications

Staged computation (MetaML, Template Haskell, Converge) offer

control execution; a program can suspend its own execution, compose

suspended programs into larger (suspended) programs, pass

suspended programs as arguments to functions, and evaluate them.

This raises issues similar to those surrounding contexts.

Our calculus is a pure rewrite system. However, a programming

language based on it can model staged computation.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 17

Other applications

Just the idea: in s[a7→t] restrict evaluations in t to those involving

variables at least as strong as a. For example

a3[a1 7→(λa2.1)0] a3[a1 7→1], and a3[a2 7→(λa1.1)0] does not

reduce. a3[a2 7→(λa2.λa1.a2)11 ∗ a3[a2 7→λa1.1], because a2 is

strong enough to reduce under a substitution by a2, but a1 is not.

This to give enough control of execution flow to encode the brackets,

escape, and run of MetaML (as well as other less exotic constructs,

such as call-by-name and call-by-value versions of function application).

Perhaps also retain good meta-theory. Perhaps compare different

staged computation (or other) calculi in common language.

We can explore how well provable properties of the NEW context

calculus transfer back along maps into it.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 18

Other applications

There is a-logic, which has a predicate var such that var(x) holds

when x is a variable. There is the NEW context calculus, which has

contexts. If we put them together, do we get a calculus/logic which can

program unification of its own terms?

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 19

Meta-properties

• Confluence.

• Preservation of strong normalisation for untyped lambda-calculus.

• Hindley-Milner type system.

• Applicative characterisation of contextual equivalence.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 20

Conclusions

We have ideas of scope as a separate entity from abstraction, from

Nominal research, as well as the idea of a freshness context. The

calculus can be thought of an operational semantics for heavily

souped-up Nominal Terms.

We have a hierarchy of strengths of variables, in common with work by

Sato et al.

We have an explicit substitution calculus. This calculus is deliberately

simple-minded treating substitutions, e.g. (σσ) and (σp). However, the

interaction with the hierarchy of variables seems interesting.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 21

Conclusions

Our meta-properties are good and in some directions non-trivial, for

example the applicative characterisation of contextual equivalence. The

applications seem new, for example our suggestion that calculi of

contexts may model state, objects, and even staged computation.

Though we make these claims formal, more work clearly remains to be

done.

Technically, this work is a logical extension and application of long

traditions and techniques in lambda-calculi, explicit substitution calculi,

and calculi of contexts, with Nominal techniques applied in a non-trivial

but reasonable manner consistent with obtaining certain desired

meta-properties.

A NEW calculus of contexts January 2005, INRIA and PPS, Paris. 22

