
Theorem

Aspects of Nominal Rewriting

Murdoch J. Gabbay

CWI Amsterdam, TU Eindhoven, Netherlands, 2/2005

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 1

This talk has 16 slides including the two so far. Please interrupt with

questions.

— Jamie ‘no time pressure’ Gabbay

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 2

The issue

Rewriting is a framework/methodology which can formally express

computation, logic, and processes. To ‘do rewriting’ it suffices to decide

on a grammar for terms, and to write down rules describing how to

transform one term into another.

For example:

• The λ-calculus is a rewrite system with terms blah for λ-terms and

rewrites blah for reductions.

• The π-calculus is a rewrite system with terms blah for π-terms and

rewrites more blah for reactions.

• First-order logic is a rewrite system with terms blah for judgements

and rewrites more blah for derivation rules, read bottom-up.

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 3

For example: a λ-calculus

Terms are given by: t ::= a | λa.t | tt | t[a7→t].
Reductions are given by:

(λa.X)Y X[a7→Y] (XY)[a7→U] (X[a7→U])(Y [a7→U])

(λb.X)[a7→U] λb.(X[a7→U]) (a 6∈ FV (X))

• X , Y , and U are meta-variables standing for unknown terms

(alternative: one rewrite rule for every term, analagous to axiom

schemes in logic).

• a and b are (what I shall call) names or atoms; variable symbols of

the object-language

(alternative: use meta-variables to represent names).

• Names get abstracted whence capture-avoidance side-conditions

(with alternative: use λ-abstraction to represent object-level

abstraction).

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 4

CRS and HOAS

I may have Jan Willem Klop in the audience, or indeed van Oostrom,

van Raamsdonk, or others from the community of Dutch researchers

who have developed Combinatory Reduction Systems (CRS) and more

generally furthered Higher-order abstract syntax (HOAS).

HOAS assumes some form of λ-term and does rewriting on that. This

enables us to use meta-variables to model object-variables, and

meta-level binding to model object-level binding. We do have to be a bit

careful not to let undecidability of computation in the λ-calculus infect

our framework, and we may have to work a bit to pass meta-level

unknowns through λ-terms to their intended position.

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 5

CRS and HOAS

My life would be easier if I could say now that Nominal techniques are a

special case, or a generalisation, or an inverse mapping, or something to

do with HOAS, and Nominal Rewriting have something to do with CRS.

Indeed it is possible to map CRS into Nominal Rewriting, but the map is

via an encoding of the λ-calculus. I feel that is a convergence of

functionality, not underlying mechanism.

The broader connections between Nominal Techniques and HOAS are

unclear, for the moment. My best explanation so far is a-logic (paper on

the web).

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 6

Basic idea

• Unknowns (meta-variables) X,Y,Z, U are distinct from atoms

(object-level variables) a, b, c.

• There is an abstraction operator [a]s which does not bind, in the

sense that substitution of t for X in [a]s is first-order textual

substitution and does not avoid capture.

• There is a context of freshness assumptions a#X in which

rewriting takes place. We are not allowed to substitute t for X if

a#t is not provable.

I will define ‘not allowed’ later.

(λ[a]X) is ‘λ of abstract a in X ’. λ is an operator; all abstractors are

(for sorts, see later). So similarly, ν[a]P is ‘ν of abstract a in P ’.

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 7

Freshness-as-a-logical-notion

a#s1 · · · a#sn

a#〈s1, . . . , sn〉

a#s

a#fs

a#s

a#[b]s

a#b a#[a]s

π−1(a)#X

a#π · X

Write ∆ for a set of apartness assumptions a#X . Write ∆ ` a#s

when assumptions ∆ prove a#s.

a#X ` a#〈X, [a]Y 〉

a#X, b#Y ` a#〈(a b) · X, (b c) · Y 〉

π is a atoms-permutation, e.g. (a b) swaps a and b. We may use them

to rename atoms to avoid capture, e.g. when we deduce equality:

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 8

≈α Equality-as-a-logical-notion

s1 ≈α t1 · · · sn ≈α tn

〈s1, . . . , sn〉 ≈α 〈t1, . . . , tn〉

s ≈α t

fs ≈α ft a ≈α a

t ≈α t′

t′ ≈α t

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

ds(π, π′)#X

π · X ≈α π′ · X

ds(π, π′) =
{

a
∣

∣ π(a) 6= π′(a)
}

the difference set.

Write ∆ ` s ≈α t when ∆ proves s ≈α t.

a, b#X ` (a b) · X ≈α X

b#X ` λ[a]X ≈α λ[b](b a) · X

Nominal matching/unification algorithms invert these rules and include a

substitution step to solve X ≈α t. We omit details. . .

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 9

• Urban, Pitts, Gabbay ‘Nominal Unification’.

• Fernández, Gabbay ‘Nominal Rewriting’, also ‘Extensions of

Nominal Rewriting’.

All on the web.

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 10

Brief summary

Nominal Techniques typically:

• Separate meta-level unknowns from object-level variable symbols.

• Separate syntactic identity ≡ from α-equivalence , and therefore

also binding (α-renaming preserves identity) from abstraction (only

preserves α-equivalence).

α-equivalence is the useful notion of equivalence, we just do not

call α-equivalent terms identical.

• Enrich the context with assumptions about freshnesses a#X .

• Enrich terms themselves with permutations suspended on

unknowns π · X and abstractions [a]X .

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 11

Some example Nominal Rewrite systems

Write V (s) for the X in s and A(s) for the a in s. Write V (∇) for ∇ a

set of freshness assertions.

A nominal rewrite rule (over a signature Σ) is a tuple (∇, l, r), we write

it ∇ ` l→r, such that V (r) ∪ V (∇) ⊆ V (l). We may write l→r

for ∅ ` l→r.

• a#X ` (λ[a]X)Y →X is a form of trivial β-reduction.

• a#X ` X→λ[a](Xa) is η-expansion.

• XY →XX is strange but quite valid.

• a→b is a rewrite rule.

• a#Z ` Xλ[a]Y →X is not a rewrite rule; Z 6∈ V (Xλ[a]Y).

X→Y is also not a rewrite rule.

I’m telling you we can also do explicit substitutions, the π-calculus, and

lots of similar cases.

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 12

Signatures and Sorts, if you want them

A Nominal Signature Σ is some sorts of atoms , base data sorts s (e.g.

N, B), and function symbols f of arity τ1→τ2. If τ1 is an empty

product say f is 0-ary (i.e. a constant) and omit the arrow.

Term sorts are inductively defined by:

τ ::= ν | s | τ × . . . × τ | [ν]τ.

τ1 × . . . × τn is a product sort. [ν]τ is an abstraction sort. Terms are

defined in the next slide, but first an example:

A nominal signature for a fragment of ML has one sort of atoms A, one

sort of data exp, and function symbols with arities

var : A→exp app : exp × exp→exp

lam : [A]exp→exp let : exp × [A]exp→exp

letrec : [A](([A]exp) × exp)→exp

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 13

Going further: recent PPDP submission

Extended nominal terms extend freshness contexts with conditions such

as •X for ‘X is closed’ (meaning: a#X is provable for all a).

With such a condition in the context, we can only substitute t for X if

a#t is provable for all a. (Actually, you can always do the substitution,

but if •a gets in the context you can prove anything.) Because t is finite,

it suffices to consider all a in t, and one fresh t.

The logic thickens but so long as it stays decidable this is not a problem.

We also extend terms with Na.t. Nis not an abstractor, so

Na.a 6≈α Nb.b. It is not a binder either, so Na.a 6≡ Nb.b. However,

we assume a rewrite rule

(F) b#X ` Na.X Nb.(b a) · X.

Nmodels name-generation, as distinct from name-binding or

name-abstraction!

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 14

Meta-properties

• Operates on true first-order terms (abstract syntax trees).

• Critical pairs lemma.

• Orthogonal systems are confluent.

• Matching/Unification/Rewriting is (at worst) quadratic; whether it is

linear is so far unknown.

• Can express rewriting for syntax-with-binders.

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 15

Conclusions

The interplay of the different notions of binding, abstraction,

name-generation, closure, and so on, is non-trivial and (I think)

illuminating and very interesting.

We have applied these ideas to logic (Nominal Logic, Fresh Logic,

a-logic) and λ-calculi (NEW calculus of contexts). I am in Eindhoven

visting MohammadReza Mousavi and Michel Reniers to see if we can

apply these ideas to SOS (structured operational semantics).

Aspects of Nominal Rewriting February 2005 CWI and TUE, Netherlands. 16

