
Is there a quick way to get names and binding

in some nominal sense up and running in

Isabelle/HOL polymorphically on the

type-class ‘type’, without having to rewrite the

whole thing from scratch — yes or no?

Murdoch J. Gabbay

JAIST, Ishikawa, 4/2005

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 1

Introduction

Many thanks to Rene ‘precisely’ ‘mountain on a mountain’ ‘gadget king’

Vestergaard, and Randy Pollack, for arranging this party.

Thanks also to Randy Pollack for putting his slides online in advance.

We should all do that.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 2

Answer:

Theorem 1. Yes.

Proof. We polymorphically exhibit a type [α]β with constructor

[−]− : α→(β→[α]β)

(like pairs) and destructor

◦ : ([α]β)→α→β

(like functions).

— we give a function in Higher-Order Logic

[−]− : α→(β→(α→β))

such that ([x]y)x = y is provable and [−]− is a binary term-former.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 3

Historical overview

Obviously I can’t do it like Randy can but let me do my best with what

experience I have:

We (Gabbay and Pitts 1999-2001) introduced a semantic model of

abstraction [A]X based on Fraenkel-Mostowski sets.

This was exciting because it was polymorphic — abstraction was a

functor — and [A]X is always the same size as X .

Of course there was more, e.g. Nquantifier, [A]X preserved LUBs of

countably ascending chains. We could talk about inductively-defined

datatypes of syntax up to binding.

But we can do that anyway: what was new was that it was polymorphic

and not too big.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 4

Historical overview

Dream: use [A]X to do binding once and for all.

Note that [A]X could be applied to function-spaces, i.e. all of computer

science as I understood it at the time, so ‘once and for all’ really does

mean that.

Did you know that [A](Y X) is isomorphic to ([A]Y)[A]X? Andrew

refused to believe me when I first noticed it. That’s how good the theory

was.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 5

Something went wrong

Nominal Sets (Frankel-Mostowski sets combined with types) is

inconsistent with the axiom of choice.

εx : A.> chooses some element of A. It is not possible to cross FM

with Isabelle/HOL. Not without reengineering lots of code.

I’d already done that kind of thing once turning Isabelle/ZF into

Isabelle/ZFA. I wasn’t going to do it again. Not all alone, unpaid,

unloved, unsupported, etc.

So:

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 6

Christian Urban . . .

. . . said ‘OK, forget polymorphism’.

Instead of ‘Fresh Isabelle’, we build Fresh in Isabelle.

Weak in theory, in practice viable.

‘Weak’ because you pay a ‘tax’ proving for your every function that it has

finite support, i.e. that it does not contain too much of ε. ‘Viable’

because the tax is a flat percentage of your effort (if you’re lucky) and

not prohibitive; especially I think on an inductive set so you have a nice

proof-principle.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 7

Jamie Gabbay. . .

. . . has been thinking.

Can we have our cake and eat it.

Polymorphism and all the other nice properties of A and [A]X , and

choice ε, and build it all in Isabelle/HOL (any one of these three

requirements is already non-trivial).

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 8

Let’s do philosophy

Frankel-Mostowksi/Nominal/Fresh techniques give you:

• Finite support (N).

• Variables inhabit a distinct type/category of elements (A).

These clearly come from the underlying semantic model.

Classical mathematics give you:

• Choice ε.

• Function-spaces Y X .

The two are incompatible. What should we throw out? Well, what do we

want? To reason on syntax-with-binding. The semantic model is a

means to that end. So get rid of it.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 9

Throw out the semantic model.

Kill FM. What? You can’t do that Jamie!

No, wait. I can explain.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 10

Table of methods

• Atoms do inhabit a separate type. Fresh method

• ‘There is always a fresh atom’ is explicit.

• Abstraction is a binary term-former.

• No ε in typed theory.

• Atoms do not inhabit a separate type. Functional method

• ‘There is always a fresh atom’ is not explicit.

• Abstraction (λ) is not a binary term-former.

• ε is in typed theory.

• Atoms do not inhabit a separate type. I propose: a-method

• ‘There is always a fresh atom’ is explicit.

• Abstraction is a binary term-former.← Nominal!

• ε is in typed theory.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 11

Apparent contradictions:

• Atoms do not inhabit a separate type.

• ‘There is always a fresh atom’ is explicit.

• Abstraction is a binary term-former.← Nominal!

• ε is in typed theory.

If abstraction is a binary term-former and atoms do not inhabit a

separate type, what is ‘abstract 2 in in 17’?

If ‘there is always a fresh atom’ is explicit, then ‘is an atom’ must be

explicit. But then we can use collection to separate out the atoms,

contradicting ‘atoms do not inhabit a separate type’.

We can also choose ‘THE atom of such-and-such a type’, which is what

led to the problems with FM and HOL.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 12

Technical kernel of solution

The basic technical kernel of my suggestion, in the context of
Isabelle/HOL, is:

• Introduce a predicate atom of type (α :: term)→Prop.

• Introduce axioms of the form atom(t) == false for all t which
are not actually variable symbols.

E.g. atom(0) == false and atom(succ(x)) == false. I
recently did a first-order logic with atom; the conditions become a
derivation rule

Γ,at t ` ∆

if t is not a variable symbol. I called it a-logic: has cut-elimination and a
sound and complete semantics.

Proof of Theorem 1. Using atom, see overleaf.

ε is there but its type is ((α : term)→o)→α stops us choosing
arbitrary atoms.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 13

a-logic

theory alogic = HOL + Datatype_Universe:

subsection {* Primitive logic *}
global
typedecl
(’a,’b) abstrtype

arities
abstrtype :: (type,type) type

consts
atom :: "’a ::logic => prop"
abstr :: "[’a :: type, ’b ::type] => (’a,’b)abstrtype"
subst :: "[(’a,’b)abstrtype, ’a] => ’b"
freshfor :: "[’a :: type, ’b :: type] => bool"

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 14

a-logic: polymorphic explicit substitution

subsubsection {* Axioms and basic definitions *}
defs
freshfor_def:
"(freshfor x y) == ALL z. (subst (abstr x y) z) = y"

axioms
fresh:
"!!y. (!!x.(freshfor x y) ==> atom x == true ==> P)

==> P"
sub_a:
"(atom x == true) ==> ((subst (abstr x x) z) = z)"
sub_app:
"subst (abstr x (f y)) z =

((subst (abstr x f) z) (subst (abstr x y) z))"
abstr_alpha:
"freshfor x’ y ==>

abstr x y = abstr x’ (subst (abstr x y) x’)"
abstr_surj:
"(!!x y. atom x == true ==> z = abstr x y ==> P z)

==> P z"

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 15

a-logic: a type of λ-calculus

typedecl lambda
consts Lam :: "(lambda,lambda)abstrtype => lambda"

App :: "lambda => lambda => lambda"
axioms
lambda_induct:
"(!!x y. P y ==> P (Lam (abstr x y))) ==>
(!!x y. P x ==> P y ==> P (App x y)) ==>
(!!x. atom x == true ==> P x)

==> P z"

This could either be an inductive datatype (given axioms such as Lam
x = App y z ==> false), or a model . . .

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 16

Reductions

. . . depending on whether you use reduce or =.

consts reduce ::
"lambda => lambda => bool"

axioms reduce_beta:
"atom x == true ==>
reduce (App (Lam (abstr x y)) z) (subst (abstr x y) z)"

reduce_cong_App:
"reduce y y’ ==> reduce (App x y) (App x y’)"

reduce_cong_Lam:
"atom x == true ==> reduce y y’ ==>

reduce (Lam (abstr x y)) (Lam (abstr x y’))"

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 17

Comments

I have not used the inductive datatypes package; we could, but we’d

have to convince it that abstr has nice properties. No time.

We cannot write EX x. atom a, only (!!x. atom x ==>
Q) ==> Q. Not too bad. Consequence of the type of atom.

But: anybody can load this theory and get proving.

Maybe even ε could be taken out of Isabelle/HOL where it is not really

needed, but now incrementally and transparently.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 18

. . . and back to nominal techniques

You get from FM to a-logic by associating to every type a set of atoms

which injects into it and interprets meta-level variable symbols (so for

example there are axioms for substitution).

(In my paper I give an elementary model based on valuations.)

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 19

Further comments

This seems promising, but I’m not guaranteeing results! I’ve only just

thought of this so I have not had time to do the research.

a-logic is a bit like a ‘Nominal Sets with substitutions everywhere’, if you

want to think of it that way (and you don’t have to if you don’t want to).

The slogan is ‘variables and substitutions are fundamental’.

It’s fully incremental, in the sense that you can have it as an

Isabelle/HOL theory, and presumably reuse nominal code because of

commonalities of form (e.g. abstr). Indeed, it’s just as if you get

substitution for free and then just carry on as usual.

It has taxes but so do they all. Some taxes could be handled ‘once and

for all’ later, if deemed worthwhile.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 20

Further comments

By the way, a-logic is more generally applicable than I have shown here.

For example, do you want context substitution?

Introduce < :: (α :: type)→α→prop with axioms such as

atom(x) ∧ atom(y) ∧ atom(z) ∧ x<y ∧ y<z ⇒ x<z

and axioms for explicit substitution such as

y<y′
⇒ x[y 7→z][y′

7→z′] = x[y′
7→z′][y 7→z[y′

7→z′]]

for possibly-capturing substitution provided y′ is ‘stronger’ than y.

Thus we can axiomatise any flavour of substitution we prefer, e.g.

context substitution.

All polymorphic in Isabelle/HOL.

Binding Challenges April 2005 JAIST, Ishikawa, Japan. 21

