
a-logic, the λ-calculus, and internalising meta

using names and binding.

Murdoch J. Gabbay

LMU, Munich, 26/7/2005

Thanks to LMU for inviting me

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 1

There are 28 more slides until the Conclusions.

(I can always skip a couple of technical ones, depending on what

interests you.)

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 2

What this talk is about

I’ll talk about how to put assertions which normally live at the meta-level,
into the object-level.

This makes the object-level more expressive (of course), and also
makes the assertions susceptible to object-level proof-principles (if they
survive the extension).

Lots of other people do this. The distinguishing feature of my work is
that I put assertions about syntax into the object-level, not assertions
about the syntax’s denotation

So:

• a-logic has a predicate at s which is true when s is a variable
symbol.

• The NEW calculus of contexts has meta-variables as first-class data
values.

(Also: Nominal Logic, Nominal Rewriting, Nominal Unification, . . .)

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 3

So. . . what exactly does the title mean?

‘Internalise the meta-level’ means ‘enrich the formal

language/system/programming environment with formal assertions

about structure of the syntax or semantics’. For example:

• Intuitionistic logic has a standard semantics using Kripke structures.

Modal logic introduces modalities, such as�P , to make assertions

about the Kripke structure (such as��P ⊃ �P).

• First-order logic has function symbols f which can be applied to

terms, as in f(t). Higher-order logic internalises this with λ, so we

can write λx.fx.

• Syntax often needs assertions of the form ‘a 6∈ fv(t)’. Nominal

Unification and Nominal Rewriting internalise this with a judgement

a#t.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 4

Nominal Techniques

Nominal techniques are a little different, because they internalise

assertions about the syntax of an assertion, rather than its semantics —

compare�P and λx.fx, which relate firmly to the semantics, and

a#t, which seems to relate to the syntactic structure of t.

(Historically, this has been know to provoke allergic reactions in some

academics. I take this as an encouraging sign in the long term. If people

saw it coming, it wouldn’t be NEW.)

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 5

Why this is good

Internalising meta-levels is often useful, simply because it exposes extra

structure to object-level proof-principles. (The trick is, to not lose the

proof-principles we care about, in the extension.)

What is the meta-level? Quite possibly, a formal language.

So if we take a more syntactic slant on this ‘internalisation’ process, we

might get nice clean proofs, because of a nice clean internalisation.

For example: the difference (in usability) between the λ-calculus λx.x

and combinatory logic skk. Both ‘internalise’ functions to first-order

algebra, but I know which one ML and Haskell are based on.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 6

One example: a-logic

Syntax is that of First-Order Logic (FOL) enriched with a unary predicate

at along with a derivation rule

(s not a variable symbol)
(atL)

Γ,at s ` ∆

Γ, at a ` ∆
(Fresh)

Γ,∆

(In (Fresh), a 6∈ Γ,∆.)

Intuitively, ¬at s says ‘s is a term’.

Note that if s is a term, so is s[a7→u] (s with a replaced by u).

Therefore, the Substitution Lemma still holds

Γ ` ∆ derivable implies Γ[a7→u] ` ∆[a7→u] is derivable.

Theorem: Cut-eliminationX

Lemma: (atL) equivalent to ∀x. ¬at fx for each term-former f .

(Fresh) is just ∃a. at a. So hey, it really easy.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 7

Applying a-logic: axiomatisation of substitution

a#u is sugar for at a ∧ ∀x. u〈a7→x〉 = u

at a ⊃ u〈a7→a〉 = u at a ⊃ a〈a7→x〉 = x

at a ∧ at b ⊃ (a 6= b ⇔ a#b)

at a ∧ b#u ⊃ u〈a7→b〉〈b7→y〉 = u〈a7→y〉

at a ∧ a#x ⊃ a#u〈a7→x〉

at b ∧ a#b ∧ a#y ⊃ u〈a7→x〉〈b7→y〉 = u〈b7→y〉〈a7→x〈b7→y〉〉

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 8

Provably closed: •s

Write

•s for ∀a. at a ⊃ a#s

This says ‘s is (provably) closed’.

•s does not imply that s is actually closed viewed as syntax.

For example, •x ` •x (‘from •x we may derive •x) but x is a variable.

Similarly, if •x then ∀a. at a ⊃ •(a〈a7→x〉), but a〈a7→x〉 clearly has

free variables a and x.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 9

The λ-calculus

(α) ∀a, b, x, y. at a ∧ b#x ⊃ λa.x = λb.x〈a7→b〉

(β) ∀a, x, y. at a ∧ •y ⊃ (λa.x)y = x〈a7→y〉

(ξ) ∀x, y. •x ∧ •y

⊃ (∀z. •z ⊃ xz = yz) ⊃ x = y

(σλ) ∀a, b, x, y. at b ∧ a#y ⊃ (λa.x)〈b7→y〉 = λa.(x〈b7→y〉)

(σapp) ∀a, x, y, z. at a ⊃ (xy)〈a7→z〉 = (x〈a7→z〉)(y〈a7→z〉)

(#app) ∀x, y. ∃a. a#x ∧ a#y

∧∀b. (b#axy ⇔ (b#a ∧ b#x ∧ b#y))

(Recall that a#x implies at a.)

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 10

This axiomatisation is correct in a suitable formal sense:

Lemma: From a FOL model of alogic + sub + lambda we obtain a

λ-model by taking {p | •p}.

Lemma: An extensional λ-model can be canonically extended to a

model of lambda.

(An ‘extensional λ-model’ is a model of the FOL theory

∀x, y. kxy = x sxyz = (xy)(xz)

∀x, y. (∀z. xz = yz) ⊃ x = y.)

Corollary: lambda is consistent and has non-trivial models. Provably

closed terms up to provable equivalence are models of the λ-calculus.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 11

Other possible theories: internalising meta-variables

By tweaking the axioms, we can get ‘friends’ of the λ-calculus. Here is

just one possibility:

Introduce a binary predicate ≤ and axioms:

at a ∧ at b ∧ a≤b ∧ b≤a ⊃ a=b

at a ∧ at b ∧ at c ∧ a≤b ∧ b≤c ⊃ a≤c at a ⊃ a≤a.

Write a < b for a ≤ b ∧ a 6= b.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 12

Other possible theories: internalising meta-variables

Now change the axioms above as follows:

at b ∧ a#b ∧ a#y ∧ b ≤ a ⊃ u〈a7→x〉〈b7→y〉 = s〈b7→y〉〈a7→x〈b7→y〉〉

at b ∧ at b ∧ a < b ⊃ u〈a7→x〉〈b7→y〉 = s〈b7→y〉〈a7→x〈b7→y〉〉

at b ∧ a#y ∧ b ≤ a ⊃ (λa.x)〈b7→y〉 = λa.(x〈b7→y〉)

at b ∧ at a ∧ a < b ⊃ (λa.x)〈b7→y〉 = λa.(x〈b7→y〉)

Hey presto, a < b means ‘b is a meta-variable’ (with respect to a).

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 13

The NEW calculus of contexts (NewCC)

Context=‘term with a hole’: C[-] = λx.[-].

[-] may be filled in a capturing manner: C[x] = λx.x.

This is not modelled by β-reduction since it avoids capture; consider

C = (λy.λx.y). Then Cx ∗ λx′.x — wrong!

C[-] is modelled by β-reduction if you have types and application: write

C = λF.λx.Fx. Then Cλy.y ∗ λx.x.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 14

The issue

Suppose a hierarchy of levels of variables of increasing strength.

Abstraction and application are (more-or-less) as before. However,

substitution for a variable avoids capture for stronger variables under

weaker variables, and does not avoid capture for weaker variables under

stronger variables.

For example, if x is weak (level 1, say) and X is stronger (level 2, say),

then C = (λX.λx.X) and

Cx (λx.X)[X 7→x] λx.(X[X 7→x]) λx.x.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 15

The issue

Problem: α-equivalence.

If λx.X = λy.X then (λX.λx.X)x λy.x. This would be bad!

Dropping α-equivalence entirely is too drastic. Some

capture-avoidance, as in (λy.λx.y)x, should be legitimate.

Result: We solve these issues and obtain not just a ‘calculus for

contexts’, but a calculus for Records, Objects, Modules, Partial

Evaluation, Dynamic Binding.

All this with good meta-properties including confluence, preservation of

strong normalisation, Hindley-Milner types, and an applicative

characterisation of contextual equivalence.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 16

Syntax

Suppose countably infinite set of disjoint infinite sets of variables

ai, bi, ci, ni, . . . for i ≥ 1. Say ai has level i. Syntax is given by:

s, t ::= ai | tt | λai.t | t[ai 7→t] | Nai.t.

Call s[ai 7→t] an explicit substitution, λai.t an abstraction, and Nai.t a

binder.

Terms are equated up to binding by Nand nothing else.

Call a variable bj stronger than another ai when j > i (when it has

strictly higher level). b3 is stronger than a1.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 17

Example terms and reductions

Let x, y, z have level 1 and X,Y,Z have level 2.

(λx.x)y x[x7→y] y Ordinary reduction

(λx.X)[X 7→x] λx.(X [X 7→x]) λx.x Context substitution

x[X 7→t] x X stronger than x

x[x′ 7→t] x Ordinary substitution

x[x7→t] t Ordinary substitution

X[x7→t] 6 Suspended substitution

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 18

Records

Fix constants 1 and 2. l and m have level 1, X has level 2.

Here is a record:

X[l 7→1][m 7→2]

Here is record lookup:

X[l 7→1][m7→2][X 7→m] X[l 7→1][X 7→m][m7→2]

 X[X 7→m][l 7→1][m7→2]

 m[l 7→1][m7→2]

 m[m7→2]

 2.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 19

In-place update

X[l 7→1][m7→2][X 7→X[l 7→2]] X[l 7→1][X 7→X[l 7→2]][m7→2]

 X[X 7→X[l 7→2]][l 7→1][m7→2]

 X[l 7→2][l 7→1][m7→2]

 X[l 7→2][m7→2]

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 20

Substitution-as-a-term

(λX.X[l 7→λn.n]) applied to lm

(λX.X[l 7→λn.n])lm X[l 7→λn.n][X 7→lm] ∗ (λn.n)m

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 21

In-place update as a term

λW.W[X 7→X[l 7→2]] applied toX[l 7→1][m7→2]

. . . and so on (W has level 3).

I’m telling you we can proceed to global state (the world is a big hole

with state suspended on it, just like a record), and Abadi-Cardelli imp-ε

object calculus. For details, see the paper.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 22

Records (again, using λ)

Fix constants 1 and 2. l and m have level 1, X has level 2.

Here is a record:

λX.X[l 7→1][m7→2].

This is just as before, but now we must use an application, to m say, to

retrieve the value stored at m:

(λX.X[l 7→1][m7→2])m X[l 7→1][m7→2][X 7→m]

(same as before on Slide 7).

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 23

Records (again, using λ)

But what about

λX.X[l 7→W][m7→2].

W is a level 3 variable, so it beats X , l, and m.

If we apply [W7→X] we obtain (after some reduction)

λX.X[l 7→X][m7→2].

Apply this to l and we obtain 2. Is that wrong?

(λX.X[l 7→X][m7→2])l X[l 7→1][m7→2][X 7→l]

 ∗ l[l 7→m][m7→2] ∗ 2

Maybe, maybe not. It depends. This kind of thing makes the

Abadi-Cardelli ‘self’ variable work. But perhaps we do not want this. The

problem is, λ does not bind, it only abstracts. We still need a binder. No

problem.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 24

Introduce N

NX.λX.X[l 7→W][m7→2].

Then

(

NX.λX.X[l 7→W][m7→2]
)

[W7→X]

 ∗ NX ′.(λX ′.X ′[l 7→W][m7→2][W7→X])

 ∗ NX ′.λX ′.X ′[l 7→X][m7→2]

Good! Apply this to l and we get X .

NX ′.(λX ′.X ′[l 7→X][m7→2]) X NX ′.(λX ′.X ′[l 7→X][m7→2] X)

 NX ′.X ′[l 7→X][m7→2][X ′ 7→X] ∗ X

Nbehaves like the π-calculus ν; it floats to the top (extrudes scope).

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 25

The future

I see a fundamental change in computer science.

We’re much more interested in bits, and their connections, and how

these connections change when the bits move around.

This is for two reasons:

• As the problems/programs get bigger, we slice them into

interconnected bits, solve the bits, then put them back together.

• The modern computing landscape is inherently component-based,

because it’s networked.

We need to develop a new mathematics to describe these things.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 26

OO, Components, Higher orders, Mobility, and geology

Modern computer science is full of clues about what that mathematics

should be.

Names and binding are one of them, because people use syntax to

describe stuff, names to describe their interrelations, substitution to

move things around, and binding to make them local.

So, this turns up in OO programming. I didn’t set out to model OO

programming in the NewCC — but once I’d internalised meta-variables,

it happened anyway. I don’t think this is a coincidence.

There are lots of systems out there describing components and their

connections, right now.

Important: I’m not going to ‘solve OO programming’, or ‘solve mobile

processes’, or ‘solve security’. That’s obviously too much. But they’re

trying to tell us something and if we are to make mathematics that lasts,

we need to listen.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 27

Case study (influence of geology on higher-order logic)

Consider Higher-Order Logic. Thirty years ago, the extra power over

FOL was often used for logical purposes, e.g. impredicativity, least

fixedpoints, axiomatising arithmetic.

Nowadays, as likely as not we will use β-reduction to ‘pipe’ arguments

around, and λ-abstraction to wrap up the components. Pfenning, Miller,

Hofmann (tried to go back to semantics with ‘a semantical analysis of

HOAS’), . . .

Type systems control resources, garbage collection, modules, state.

Completely different from ‘simple types’.

This suggests that higher-order logic (and techniques in general) have

been exposed to a ‘geological shift’.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 28

Names and binding

Names and binding are a (one) distillation of something that’s

happening across a broad front in many different areas of mathematics.

Substitution becomes a model of ‘plugging things together’. Binding is

the interface. It is possible to define different substitutions, and different

bindings, tailored to different situations.

Much more is possible.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 29

Names and binding

What will I do? Add assertions about syntax to object-level systems.

People haven’t done that before.

Why do that? To set about modelling a broad trend in computer science.

Get it right, and we could make a big difference.

And this is what mathematicians are supposed to do.

The field is wide open.
There are interesting problems around.

Thanks for listening.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 30

Asking questions, are we?

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 31

Reduction rules of the NewCC

(β) (λai.s)u s[ai 7→u]

(σa) ai[ai 7→u] u ∀c. c#ai⊃c#u

(σ#) s[ai 7→u] s ai#s

(σp) (ait1 . . . tn)[bj 7→u] (ai[bj 7→u]) . . . (tn[bj 7→u])

(σσ) s[ai 7→u][bj 7→v] s[bj 7→v][ai 7→u[bj 7→v]] j>i

(σλ) (λai.s)[ck 7→u] λai.(s[ck 7→u]) ai#u, ck k≤i

(σλ′) (λai.s)[bj 7→u] λai.(s[bj 7→u]) j > i

(σtr) s[ai 7→ai] s

(Np) (Nnj .s)t Nnj .(st) nj 6∈t

(Nλ) λai. Nnj .s Nnj .λai.s nj 6=ai

(Nσ) (Nnj .s)[ai 7→u] Nnj .(s[ai 7→u]) nj 6∈u nj 6=ai

(N6∈) Nnj .s s nj 6∈s

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 32

Graphs

Here is a fun NEW calculus of contexts program:

s = λX.((X[x7→y])(X[y 7→x])).

Observe s(xy) ∗ (yy)(xx).

The hierarchy of variables allows us to inject terms into positions where

their variables with be captured, either by a lambda or by an explicit

substitution. Free variables behave like dangling ‘edges’.

a-logic, the λ-calculus, and internalising meta LMU, Munich, 26/7/2005. 33

