
Nominal Rewriting
Murdoch J. Gabbay

Joint work with Maribel Fernández

Leicester, 9/8/2005

Nominal Rewriting 9 August 2005, Leicester. 1

Thank you for having me over (and for the splendid lunch, with

tablecloths!).

This talk has 17 slides including the two so far.

— Jamie ‘no time pressure’ Gabbay

Nominal Rewriting 9 August 2005, Leicester. 2

The issue

Rewriting is a framework to express computation, logic, and processes.

Anybody can ‘do rewriting’! Just pick your favourite formal grammar, and

write down rewrite rules describing how it evolves.

For example:

• The λ-calculus is a rewrite system with terms blah for λ-terms and

rewrites blah for reductions.

• The π-calculus is a rewrite system with terms blah for π-terms and

rewrites blah for reactions.

• First-order logic is a rewrite system with terms blah for judgements

and rewrites blah for derivation rules, read bottom-up.

Nominal Rewriting 9 August 2005, Leicester. 3

For example: a λ-calculus

Terms are given by: t ::= a | λa.t | tt | t[a7→t].
Reductions are given by:

(λa.X)Y X[a7→Y] (XY)[a7→U] (X[a7→U])(Y [a7→U])

(λb.X)[a7→U] λb.(X[a7→U]) (a 6∈ FV (X))

• X , Y , and U are meta-variables standing for unknown terms

(alternative: one rewrite rule for every term, analagous to axiom

schemes in logic).

• a and b are (what I shall call) names or atoms; variable symbols of

the object-language

(alternative: use meta-variables to represent names).

• Names get abstracted whence capture-avoidance side-conditions

(with alternative: use λ-abstraction to represent object-level

abstraction).

Nominal Rewriting 9 August 2005, Leicester. 4

Basic idea

• Unknowns (meta-variables) X,Y,Z,U are distinct from atoms

(object-level variables) a, b, c.

• There is an abstraction operator [a]s which does not bind, in the

sense that substitution of t for X in [a]s is first-order textual

substitution and does not avoid capture.

• There is a context of freshness assumptions a#X in which

rewriting takes place. We are not allowed to substitute t for X if

a#t is not provable.

I will define ‘not allowed’ later.

(λ[a]X) is ‘λ of abstract a in X ’. λ is an operator; all abstractors are

(for sorts, see later). So similarly, ν[a]P is ‘ν of abstract a in P ’.

Nominal Rewriting 9 August 2005, Leicester. 5

Freshness-as-a-logical-notion

a#s1 · · · a#sn

a#〈s1, . . . , sn〉

a#s

a#fs

a#s

a#[b]s

a#b a#[a]s

π−1(a)#X

a#π · X

Write ∆ for a set of apartness assumptions a#X . Write ∆ ` a#s

when assumptions ∆ prove a#s.

a#X ` a#〈X, [a]Y 〉

a#X, b#Y ` a#〈(a b) · X, (b c) · Y 〉

π is a atoms-permutation, e.g. (a b) swaps a and b. We may use them

to rename atoms to avoid capture, e.g. when we deduce equality:

Nominal Rewriting 9 August 2005, Leicester. 6

≈ Equality-as-a-logical-notion

s1 ≈ t1 · · · sn ≈ tn

〈s1, . . . , sn〉 ≈ 〈t1, . . . , tn〉

s ≈ t

fs ≈ ft a ≈ a

t ≈ t′

t′ ≈ t
s ≈ t

[a]s ≈ [a]t

a#t s ≈ (a b) · t

[a]s ≈ [b]t

ds(π, π′)#X

π · X ≈ π′ · X

ds(π, π′) =
{

a
∣

∣ π(a) 6= π′(a)
}

the difference set.

Write ∆ ` s ≈ t when ∆ proves s ≈ t.

a, b#X ` (a b) · X ≈ X

b#X ` λ[a]X ≈ λ[b](b a) · X

Nominal matching/unification algorithms invert these rules and include a

substitution step to solve X ≈ t.

Nominal Rewriting 9 August 2005, Leicester. 7

Unification and matching I

a#b, Pr → Pr

a#fs, Pr → a#s, Pr

a#〈s1, . . . , sn〉, P r → a#s1, . . . , a#sn, P r

a#[b]s, Pr → a#s, Pr

a#[a]s, Pr → Pr

a#π · X,Pr → π-1 · a#X,Pr π 6≡ Id

Thus:

a#〈X, [a]Y 〉
∗

→ a#X a#fa
∗

→ a#a

a#〈(a b) · X, (b c) · Y 〉
∗

→ b#X, a#Y

Nominal Rewriting 9 August 2005, Leicester. 8

Unification and matching II

a ≈ a, Pr → Pr

〈l1, . . . , ln〉 ≈ 〈s1, . . . , sn〉, P r → l1 ≈ s1, . . . , ln ≈ sn, P r

fl ≈ fs, Pr → l ≈ s, Pr

[a]l ≈ [a]s, Pr → l ≈ s, Pr

[b]l ≈ [a]s, Pr → (a b) · l ≈ s, a#l, P r

π · X ≈ π′ · X,Pr → ds(π, π′)#X,Pr

Thus:

[a]X ≈ [b]X
∗

→ a#X, b#X a ≈ b 6
∗

→

[b]Y ≈ [a]X → a#Y, (a b) · Y ≈ X
X 7→(a b)·Y

→ a#Y

Nominal Rewriting 9 August 2005, Leicester. 9

• Urban, Pitts, Gabbay ‘Nominal Unification’.

• Fernández, Gabbay ‘Nominal Rewriting’, ‘Extensions of Nominal

Rewriting’.

• Gabbay, ‘NEW calculus of contexts’.

• Gabbay, Mousavi, ‘Nominal SOS’.

• Pitts, Shinwell, and others, ‘FreshML’.

• Cheney, Urban, ‘α-prolog’.

All on the web.

Nominal Rewriting 9 August 2005, Leicester. 10

Brief summary

Nominal Techniques typically:

• Separate meta-level unknowns from object-level variable symbols.

• Separate syntactic identity ≡ from α-equivalence ≈, and therefore

also binding (α-renaming preserves identity) from abstraction (only

preserves α-equivalence).

α-equivalence is the useful notion of equivalence, we just do not

call α-equivalent terms identical.

• Enrich the context with assumptions about freshnesses a#X .

• Enrich terms themselves with permutations suspended on

unknowns π · X and abstractions [a]X .

Nominal Rewriting 9 August 2005, Leicester. 11

Some example Nominal Rewrite systems

Write V (s) for the X in s and A(s) for the a in s. Write V (∇) for ∇ a

set of freshness assertions.

A nominal rewrite rule (over a signature Σ) is a tuple (∇, l, r), we write

it ∇ ` l → r, such that V (r)∪ V (∇) ⊆ V (l). We may write l → r

for ∅ ` l → r.

• a#X ` (λ[a]X)Y → X is a form of trivial β-reduction.

• a#X ` X → λ[a](Xa) is η-expansion.

• XY → XX is strange but quite valid.

• a → b is a rewrite rule.

• a#Z ` Xλ[a]Y → X is not a rewrite rule; Z 6∈ V (Xλ[a]Y).

X → Y is also not a rewrite rule.

I’m telling you we can also do explicit substitutions, the π-calculus, and

lots of similar cases.

Nominal Rewriting 9 August 2005, Leicester. 12

Signatures and Sorts, if you want them

A Nominal Signature Σ is some sorts of atoms A, base data sorts s

(e.g. N, B), and function symbols f of arity τ1 → τ2. If τ1 is an empty

product say f is 0-ary (i.e. a constant) and omit the arrow.

Term sorts are inductively defined by:

τ ::= ν | s | τ × . . . × τ | [ν]τ.

τ1 × . . . × τn is a product sort. [ν]τ is an abstraction sort. Terms are

defined in the next slide, but first an example:

A nominal signature for a fragment of ML has one sort of atoms A, one

sort of data exp, and function symbols with arities

var : A → exp app : exp × exp → exp

lam : [A]exp → exp let : exp × [A]exp → exp

letrec : [A](([A]exp) × exp) → exp

Nominal Rewriting 9 August 2005, Leicester. 13

Going further: Extended Nominal Rewriting

Extended nominal terms extend freshness contexts with conditions such

as •X for ‘X is closed’ (meaning: a#X is provable for all a).

With such a condition in the context, we can only substitute t for X if

a#t is provable for all a. (Actually, you can always do the substitution,

but if •a gets in the context you can prove anything.) Because t is finite,

it suffices to consider all a in t, and one fresh t.

The logic thickens but so long as it stays decidable this is not a problem.

We also extend terms with Na.t. Nis not an abstractor, so

Na.a 6≈ Nb.b. It is not a binder either, so Na.a 6≡ Nb.b. However, we

assume a rewrite rule

(F) b#X ` Na.X Nb.(b a) · X.

Nmodels name-generation, as distinct from name-binding or

name-abstraction!

Nominal Rewriting 9 August 2005, Leicester. 14

Meta-properties

• Operates on true first-order terms (abstract syntax trees).

• Critical pairs lemma.

• Orthogonal systems are confluent.

• Matching/Unification/Rewriting is (at worst) quadratic.

• Can express rewriting for syntax-with-binders.

• Is implement(able/ed).

Nominal Rewriting 9 August 2005, Leicester. 15

Rewriting: Conclusions

The interplay of the different notions of binding, abstraction,

name-generation, closure, and so on, is non-trivial and (I think)

illuminating and very interesting.

This material does not seem to fit into the usual category-theoretic

frameworks: Gabbay-Pitts Nis useful and has no known universal

characterisation (work by Menni aside), neither does the ‘finite support’

assumption which underlies it, and the X have a different flavour, in the

presence of abstraction [a]X , than the uniformity induced by functors.

Nominal Rewriting 9 August 2005, Leicester. 16

More conclusions

The logical laws from slides 6 and 7 as semantic equalities, we get a

notion of substitution. This suggests (to me) that we can talk about

modularity, accessibility, and movement in new ways — independently

of the underlying model since (as with logics, which I also investigate)

nominal rewriting says nothing about what is rewritten, it only presumes

it can be described by terms.

Category Theory, λ-calculi, specification languages, spatial logics

. . . the way computer science is developing is forcing us to use these

frameworks to talk about modularity, accessibility, and movement — so

we can slice up our systems and describe inherently mobile ones.

Rich possibilities for collaboration arise from this NEW way of thinking.

Nominal Rewriting 9 August 2005, Leicester. 17

