Murdoch J. Gabbay

Joint work with Maribel Fernandez

Leicester, 9/8/2005

Nominal Rewriting 9 August 2005, Leicester.

Thank you for having me over (and for the splendid lunch, with
tablecloths!).

This talk has 17 slides including the two so far.

— Jamie ‘no time pressure’ Gabbay

Nominal Rewriting 9 August 2005, Leicester.

The issue

Rewriting is a framework to express computation, logic, and processes.
Anybody can ‘do rewriting’! Just pick your favourite formal grammar, and
write down rewrite rules describing how it evolves.

For example:

e The A-calculus is a rewrite system with terms blah for A-terms and
rewrites blah for reductions.

e The m-calculus is a rewrite system with terms blah for -terms and
rewrites blah for reactions.

e First-order logic is a rewrite system with terms blah for judgements
and rewrites blah for derivation rules, read bottom-up.

Nominal Rewriting 9 August 2005, Leicester.

For example: a A-calculus

Terms are given by: ¢ ::=a | Aa.t | tt | t|ar—t].
Reductions are given by:

(Aa.X)Y ~ X[a—Y] (XY)|a—U]| ~ (X|a—U])(Y]a—U])
(Ab.X)[a—U] ~ \bo.(X[a—U)) (a & FV (X))
e X, Y, and U are meta-variables standing for unknown terms

(alternative: one rewrite rule for every term, analagous to axiom
schemes in logic).

e ¢ and b are (what | shall call) names or atoms; variable symbols of
the object-language
(alternative: use meta-variables to represent names).

e Names get abstracted whence capture-avoidance side-conditions
(with alternative: use A-abstraction to represent object-level
abstraction).

Nominal Rewriting 9 August 2005, Leicester.

Basic idea

e Unknowns (meta-variables) X, Y, Z, U are distinct from atoms
(object-level variables) a, b, c.

e There is an abstraction operator [a|s which does not bind, in the
sense that substitution of ¢ for X in |a]s is first-order textual
substitution and does not avoid capture.

e There is a context of freshness assumptions a#X in which
rewriting takes place. We are not allowed to substitute ¢ for X if

a#t is not provable.

| will define ‘not allowed’ later.

(Aa]X) is ‘X of abstract a in X'. X is an operator; all abstractors are
(for sorts, see later). So similarly, v|a| P is ‘v of abstract a in P".

Nominal Rewriting 9 August 2005, Leicester.

Freshness-as-a-logical-notion

a#s1 -+ a#s, a#s aFts
(s, s aftfs af[b]s
- m ! (a)#X
a#tb aFlals gt - X

Write A for a set of apartness assumptions a#X . Write A = a#s
when assumptions A prove a#s.

a#X F a# (X, |a]Y)
a# X, b#Y F a#((ad) - X,(bc)-Y)

T is a atoms-permutation, e.g. (a b) swaps a and b. We may use them
to rename atoms to avoid capture, e.g. when we deduce equality:

Nominal Rewriting 9 August 2005, Leicester.

~ Equality-as-a-logical-notion

S1~1T1 -+ 8, ~ 1y s~ t t ~ ¢
<817'°'78n>%<t17“'7tn> fS%ft a~a t/%t
s ~ a#t s~ (ab)-t ds(m,n)#X

lals ~ |alt [a]s ~ [blt T X ~7x . X
ds(m,m') = {a | m(a) # 7'(a)} the difference set.
Write A = s ~ t when A proves s ~ t.

G, bHX F (ab)- X
b#X F AalX

X
Apl(ba) - X

Q

Q

Nominal matching/unification algorithms invert these rules and include a
substitution step to solve X ~ ¢.

Nominal Rewriting 9 August 2005, Leicester.

Unification and matching |

a#b, Pr — Pr
a#fs, Pr — a#s, Pr
aF(S1,...,8n), Pr — a#tsi,...,aFs,, Pr
a#|bls, Pr — a#s, Pr
a#lals, Pr — Pr
attm- X, Pr — wl.a#X,Pr m Z Id
Thus:
a#(X, [a]Y) = a#X a#tfa = a#ta

a#((ab) - X,(bc)-Y) 5 b#X, a#Y

Nominal Rewriting 9 August 2005, Leicester.

Unification and matching |l

a~a,Pr — Pr
(Iiyoooylpn) = (81,0, 8n), Pr — 11 =~ s1,...,l, = s,, Pr

fl~ fs,Pr — I[~s,Pr

lall ~ |a]s, Pr — [~ s, Pr

bl ~ |a]s, Pr — (ab)-1l=~s,a#l, Pr

- X~n-X,Pr — ds(m,n")#X, Pr
Thus:
(@)X ~ b X = a#X, b#X a~b/

X—(a b)Y
H

blY ~ |[a|X — a#Y, (ab)- Y = X a#Y

Nominal Rewriting 9 August 2005, Leicester.

e Urban, Pitts, Gabbay ‘Nominal Unification’.

e Fernandez, Gabbay ‘Nominal Rewriting’, ‘Extensions of Nominal
Rewriting’.

e Gabbay, ‘NEW calculus of contexts’.
e Gabbay, Mousavi, ‘Nominal SOS’.

e Pitts, Shinwell, and others, ‘FreshML.
e Cheney, Urban, ‘a-prolog’.

All on the web.

Nominal Rewriting 9 August 2005, Leicester.

10

Nominal Techniques typically:
e Separate meta-level unknowns from object-level variable symbols.

e Separate syntactic identity = from -equivalence ~, and therefore
also binding (a-renaming preserves identity) from abstraction (only
preserves (x-equivalence).

-equivalence is the useful notion of equivalence, we just do not
call a-equivalent terms identical.

e Enrich the context with assumptions about freshnesses a# X .

e Enrich terms themselves with permutations suspended on
unknowns 7 - X and abstractions [a] X .

Nominal Rewriting 9 August 2005, Leicester. 11

Some example Nominal Rewrite systems

Write V' (s) for the X in s and A(s) for the a in s. Write V' (V) for V a
set of freshness assertions.

A nominal rewrite rule (over a signature) is a tuple (V, [, 1), we write
itV = [— r,suchthat V(r) UV (V) C V(). We may write | — r
for() = [— r.

o a# X F (Aa]X)Y — X isaform of trivial 5-reduction.
e a# X + X — Ma|](Xa) is n-expansion.
e XY — X X is strange but quite valid.

e a4 — bis arewrite rule.

o a# 7 = X\alY — Xisnotarewriterule; Z € V(X \|a]Y).
X — Y is also not a rewrite rule.

I’'m telling you we can also do explicit substitutions, the 7-calculus, and
lots of similar cases.

Nominal Rewriting 9 August 2005, Leicester.

12

Signatures and Sorts, if you want them

A Nominal Signature X2 is some sorts of atoms A, base data sorts s
(e.g. N, B), and function symbols f of arity 7y — 79. If 7q is an empty
product say f is O-ary (i.e. a constant) and omit the arrow.

Term sorts are inductively defined by:
Tu=v|s|TX...xT]|[V]T

T1 X ... X Ty, is a product sort. |V|T is an abstraction sort. Terms are
defined in the next slide, but first an example:

A nominal signature for a fragment of ML has one sort of atoms A, one
sort of data exp, and function symbols with arities
var : A — exp app : exp X exrp — exrp
lam: [Alexp — exp let:exp X |[Alexp — exp
letrec: |A|(([Alexp) x exp) — exp

Nominal Rewriting 9 August 2005, Leicester.

13

Going further: Extended Nominal Rewriting

Extended nominal terms extend freshness contexts with conditions such
as e X for ‘X is closed’ (meaning: a# X is provable for all a).

With such a condition in the context, we can only substitute ¢ for X if
a#t is provable for all a. (Actually, you can always do the substitution,
but if @a gets in the context you can prove anything.) Because t is finite,
it suffices to consider all a in ¢, and one fresh .

The logic thickens but so long as it stays decidable this is not a problem.

We also extend terms with la.t. U is not an abstractor, so
Na.a # WNDb.b. Itis not a binder either, so Wa.a = Nb.b. However, we
assume a rewrite rule

(F) b#X + WNa.X ~ Nb.(ba) - X.

I models name-generation, as distinct from name-binding or
name-abstraction!

Nominal Rewriting 9 August 2005, Leicester. 14

e Operates on true first-order terms (abstract syntax trees).
e Critical pairs lemma.

e Orthogonal systems are confluent.

e Matching/Unification/Rewriting is (at worst) quadratic.

e Can express rewriting for syntax-with-binders.

e |s implement(able/ed).

Nominal Rewriting 9 August 2005, Leicester.

15

Rewriting: Conclusions

The interplay of the different notions of binding, abstraction,
name-generation, closure, and so on, is non-trivial and (I think)
Illuminating and very interesting.

This material does not seem to fit into the usual category-theoretic
frameworks: Gabbay-Pitts [/l is useful and has no known universal
characterisation (work by Menni aside), neither does the ‘finite support’
assumption which underlies it, and the X have a different flavour, in the
presence of abstraction |a|.X, than the uniformity induced by functors.

Nominal Rewriting 9 August 2005, Leicester.

16

The logical laws from slides 6 and 7 as semantic equalities, we get a
notion of substitution. This suggests (to me) that we can talk about
modularity, accessibility, and movement in new ways — independently
of the underlying model since (as with logics, which | also investigate)
nominal rewriting says nothing about what is rewritten, it only presumes
It can be described by terms.

Category Theory, A-calculi, specification languages, spatial logics

... the way computer science is developing is forcing us to use these
frameworks to talk about modularity, accessibility, and movement — so
we can slice up our systems and describe inherently mobile ones.

Rich possibilities for collaboration arise from this NEW way of thinking.

Nominal Rewriting 9 August 2005, Leicester.

17

