
Nominal Rewriting:
Or . . . talking about functions, without

functions.
Murdoch J. Gabbay

Joint work with Maribel Fernández

Thanks to Arnon Avron and Nachum Derschowitz.

Tel-Aviv University, 6 October 2005.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 1



Health warning:

This will not be a formal or technical talk.

This material is back-to-front and consists mostly of lies.

For honesty, read other slides, or the papers. (On my homepage.)

Nominal Rewriting Tel-Aviv University, 6 October 2005. 2



Motivation

Functions are very useful, but rather weighty beasts.

We want to talk about functions, and compute their results, but do we

want to meet someone on the street who gives us a function and says

‘here, hold this for a moment’.

For example, the identity function on the natural numbers Id is

characterised by the rewrite Id(x) → x. This is quite different from its

set representation as

Id = {(0, 0), (1, 1), (2, 2), . . .}

which is guaranteed to crash any computer which tries to actually build

this as a data element.

Computers are good at manipulating syntax, and not mathematics (or

ideas).

So welcome to the wonderful world of formal syntax.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 3



Rewriting

Pick some term-formers f1, f2, . . . , fn. This is a signature.

Typical examples; the signature of a pocket calculator:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +,×, /,−.

The signature of elementary linguistics:

Mary, John, loves.

A term is an abstract syntax tree which is a tree with each node labelled

by term-formers. Most convenient to represent this as a properly

bracketed string with comma-separated subtrees,

loves(Mary, John) + (0, 1) + (1,×(2, 3))

or even better as appropriate infix notation:

Mary loves John 0 + 1 1 + (2 × 3)

Nominal Rewriting Tel-Aviv University, 6 October 2005. 4



Rewriting

Nota bene: this is an unsorted system. loves(John) or 0(1, 1, 3) are

still terms, just not meaningful ones. 0(1, 1, 3) is a tree with root

labelled 0 and three subtrees each consisiting of a single leaf labelled

respectively 1, 1, and 3.

They hang around in our universe of terms and probably nobody will

ever touch them, but they don’t harm anyone. Like books in the shelves

of a well-meaning but time-poor professor. Forget about them (or

impose sorts).

Also, for the pocket calculator example we might want to let 1(1)
represent 11. I never use no number larger than 3 in this talk.

(0 to 9 on previous slide are term-formers; 1(1) is a term; 11 is binary,

of course.)

Nominal Rewriting Tel-Aviv University, 6 October 2005. 5



Rewrite system for arithmetic

Extend the language of terms with unknowns X , Y , Z (also called

variable symbols).

A rewrite rule is a pair of terms l → r where the unknowns mentioned

in r are a subset of those mentioned in l.

For example:

X × (Y + Z) → (X × Y ) + (X × Z) X + Y → Y + X

Think of a rewrite rule as being a directed equality, parametarised over

whatever goes into its unknowns (we say they are instantiated).

Typically it is useful to orient rewrites so that terms become simpler, and

reduce in finite time to a term which does not reduce any further (a

normal form).

This models computation; the normal form is our ‘result’.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 6



Rewrite system for combinators

Take as signature S, K, and · (application). Write ·(s, t) as st and

associate to the left, as usual. Rewrite rules are:

SXY Z → (XZ)(Y Z) KXY → X.

An example rewrite is (for t any term):

SKKt → (Kt)(Kt) → t

(SKK models the identity function.)

Nominal Rewriting Tel-Aviv University, 6 October 2005. 7



Rewrite system for the lambda-calculus

Extend the signature with λ:

• Countably infinitely many atoms a, b, c, d, . . . to represent variable

symbols of the logic,

• A term-former abstraction abs. Write abs(a, t) as [a]t.

• A term-former substitution σ. Write σ([a]t, u) as t[a7→u].

Additional rewrite rules are:

(λ[a]X)Y → X[a7→Y ]
(

app(λ[a]X,Y ) → σ([a]X,Y )
)

and. . .

Nominal Rewriting Tel-Aviv University, 6 October 2005. 8



Explicit substitution

a[a7→X] → X b[a7→X] → b

f(X1, . . . ,Xn)[a7→X] → f(X1[a7→X], . . . ,Xn[a7→X])

b#X ` ([b]Y )[a7→X] → [b](Y [a7→X])

For example:

(λ[a]a)b → a[a7→b] → b

(λ[a]aab)b → (aab)[a7→b] → (aa)[a7→b](b[a7→b]) →∗ bbb

(λ[a]λ[b]a)b → (λ[b′]a)[a7→b] → λ(([b′]a)[a7→b])
b
′#b
→

λ[b′](a[a7→b]) → λ[b′]b.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 9



α-equality and freshness

Em . . . what are b#X and b′#b? How did b turn into b′?

b#s is read b is fresh for s. The intuition is that b can occur in s, but
only under an abstraction.

[a]s is read abstract a in s.

Remember that unknowns get instantiated, so b#X in a rewrite will
turn into b#s for some appropriate s.

Also, rewrite rules are applied up to renaming unknowns and atoms. So

(λ[a]X)Y → X[a7→Y ]
(

app(λ[a]X,Y ) → σ([a]X,Y )
)

induces the same rewrites as

(λ[c]X)Y → X[c7→Y ]
(

app(λ[c]X,Y ) → σ([c]X,Y )
)

and

(λ[c]X ′)Y ′ → X ′[c7→Y ′]
(

app(λ[c]X ′, Y ′) → σ([c]X ′, Y ′)
)

Nominal Rewriting Tel-Aviv University, 6 October 2005. 10



α-equality and freshness

a#s1 · · · a#sn

a#f(s1, . . . , sn)

a#s

a#[b]s a#b a#[a]s

π-1(a)#X

a#π · X

s1 ≈ t1 · · · sn ≈ tn

f(s1, . . . , sn) ≈ f(t1, . . . , tn) a ≈ a

t ≈ t′

t′ ≈ t

s ≈ t

[a]s ≈ [a]t

a#t s ≈ (a b) · t

[a]s ≈ [b]t

ds(π, π′)#X

π · X ≈ π′ · X

ds(π, π′)
def
=

{

n
∣

∣ π(n) 6= π′(n)
}

.

For example, ds((a b), Id) = {a, b}.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 11



Example derivation

a#λ[a]ba

a ≈ a b ≈ b

ab ≈ ab

λ[b]ab ≈ (b a) · (λ[a]ba) ≡ λ[b]ab

λ[a]λ[b]ab ≈ λ[b]λ[a]ba

a#λ[a](b a) · X

(#X)
X ≈ (b a) ◦ (b a) · X

λ[b]X ≈ (b a) · (λ[a](b a) · X) ≡ λ[b](b a) ◦ (b a) · X

λ[a]λ[b]X ≈ λ[b]λ[a](b a) · X

Note permutation allows treatment of open terms (terms mentioning

unknowns), which allows a parametric treatment of terms with

abstraction and unknowns.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 12



Permutations

A swapping is a pair of atoms (a b). It has an action on atoms and
terms as follows:

(a b) · a ≡ b (a b) · b ≡ a and (a b) · c ≡ c (c 6= a, b)

and

(a b) · f(t1, . . . , tn) = f((a b) · t1, . . . , (a b) · tn)

(a b) · [n]t = [(a b) · n](a b)t

(a b) · (π · X) = (a b) ◦ π · X.

Permutations π ::= Id | (a b) ◦ π act as the composition of their
component swappings: (ab) ◦ (b c) · c ≡ a.

Note that permutations act on abstractions just like any other
term-former (distributing into it). Any kind of substitution would have to
worry about avoiding capture, thus inducing side-conditions which make
for a far less ‘algebraic’ definition.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 13



Nominal Rewriting [PPDP’04]

The recipe is:

1. Separate meta-variables (unknowns X) and object-variables

(atoms a).

2. Introduce a term-former [a]X to model abstraction (like λ but:).

3. β-reduction not a structural congruence of terms — implement with

rewrites.

4. α-equivalence is also not a structural congruence of terms — so

[a]a 6≡ [b]b.

5. Handle rewriting of open terms using freshness assumptions a#X .

6. Do introduce ≈ and make it primitive, in that by definition of rewriting

(omitted!) if Γ ` s → t and if Γ ` t ≈ t′ then Γ ` s → t′.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 14



Nominal Rewriting [PPDP’04]

It is a theorem that if Γ ` s → t and Γ ` s ≈ s′ then Γ ` s′ → t.
Importantly, this is not built into the definition. This is a basic

‘correctness’ property which also guarantees that rewrites are efficiently

computable.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 15



Summary

Rewriting says: take a world of syntax and give it a dynamics based on

a notion of partial terms which is formalised by unknowns. The only

property of a term relevant for rewriting is its outermost term-formers.

Nominal rewriting says: take a world of syntax as above but with the

additional intensional property of freshness # (for a set of atoms

a, b, c, . . .). Make rewrites conditional on satisfying freshness

conditions on the unknowns, in the sense that the conditions should be

actually valid for whatever the unknown is instantiated to.

b#X ` ([b]Y )[a7→X] → [b](Y [a7→X]).

In this way, we get to talk about functions, without ever meeting them in

person.

Nominal Rewriting Tel-Aviv University, 6 October 2005. 16


