Nominal Terms with a Hierarchy of Variables Or ... when are unknowns? Murdoch J. Gabbay

Joint work with Giulio Manzonetto and Antonino Salibra
Technical University Eindhoven, 31 October 2005.

Health warning:
I'm still busy inventing this stuff.
This material probably consists mostly of errors.
If this doesn't make sense, tell me - and wait for the paper.
Thanks for finding time to come.
'Normal' substitution is capture-avoiding on bound variables. E.g.

$$
(\forall x . x=y)[y \mapsto x] \equiv \forall x^{\prime} . x^{\prime}=x \quad(\lambda x .(\lambda y . x y)) y \rightarrow \lambda y^{\prime} . y y^{\prime}
$$

'Context' substitution is not. E.g.
$P \cong Q$ when in all process contexts $C, C[P] \downarrow$ if and only if $C[Q] \downarrow$.
Normally these are understood as phenomena related purely to syntax. I would like some semantic account. (This means technically that I have to give x a semantics independently of some ambient evaluation to closed terms, and a similar but not identical one to the hole $[-]$ in $C[-]$, as well as to C itself.)
\forall and \exists from first-order logic have symmetric intro-rules:

$$
\begin{gathered}
\frac{\Gamma \vdash P, \Delta}{\Gamma \vdash \forall x . P, \Delta}(\forall R) \quad(x \notin \Gamma, \Delta) \quad \frac{\Gamma, P \vdash \Delta}{\Gamma, \exists x . P \vdash \Delta}(\exists L) \quad(x \notin \Gamma, \Delta) \\
\frac{\Gamma, P[x \mapsto s] \vdash \Delta}{\Gamma, \forall x . P \vdash \Delta}(\forall L) \quad \frac{\Gamma \vdash P[x \mapsto s], \Delta}{\Gamma \vdash \forall x . P, \Delta}(\exists R)
\end{gathered}
$$

There are explanations of where these symmetries come from, a great example of which is adjunctions in category theory. These presume a typed environment and introduce, in effect, functions - but weren't we doing first-order logic?

I want something inherently type- and function-free. I also want to decompose \forall and \exists into a simpler self-dual quantifier (self-dual meaning that the intro-rules on left and right are identical except for the side of the sequent they act on).

Records and unstructured datatypes, for example customer.ID : \mathbb{N} are generally modelled using either table lookups, lists, or functions. I want a notion of unstructured data which is atomic, that is, relies on no implementational overhead. This exists, e.g. in the Cardelli-Abadi object calculus, but I want it in a generic framework which is not specifically tailored to this one job.

I also want to model component-based semantics which involve graphs being substituted into other graphs, possibly with rewiring of edges during the substitution. Again, I want this with no specific implementational overhead (e.g., explicitly modelling graphs!).

Can we do this?

Is there a single system which will exhibit all of these disparate phenomena as aspects of a single, preferably rather elementary, system? Can we give this system a simple semantics.

Yes.
Very simple. I'll give an equational system (the only judgement is equality $s=t$).

If you know Nominal Algebraic Specifications (work with Aad Mathijssen), you can think of what you are about to see as NAS on steroids and speed. (Though that is only a first approximation.)

Assume base data sorts δ, one of which is propositions o. Sorts σ, τ and arities ρ are:

$$
\sigma, \tau::=\delta \mid[\sigma] \sigma \quad \rho::=\left(\sigma_{1}, \ldots, \sigma_{n}\right) \sigma
$$

Here n may equal zero.
For $i \geq 1$ and sort σ assume variable symbols $a_{\sigma}^{i}, b_{\sigma}^{i}, c_{\sigma}^{i}$ of level i and sort σ - we may drop the annotations.

Assume term-formers $f: \rho$.
Then terms are:

$$
s, t, u, v::=a_{\sigma}^{i}\left|f_{\left(\sigma_{1}, \ldots, \sigma_{n}\right) \sigma}\left(s_{\sigma_{1}}, \ldots, s_{\sigma_{n}}\right)\right|\left(\left[a_{\sigma}^{i}\right] s_{\tau}\right)_{[\sigma] \tau} \mid И a_{\sigma} . s_{o}
$$

Or, without annotations:

$$
s, t, u, v::=a|f(s, \ldots, s)|[a] s \mid \text { Иa.s. }
$$

$$
s, t, u, v::=a_{\sigma}^{i}\left|f_{\left(\sigma_{1}, \ldots, \sigma_{n}\right) \sigma}\left(s_{\sigma_{1}}^{i_{1}}, \ldots, s_{\sigma_{n}}^{i_{n}}\right)\right|\left(\left[a_{\sigma}^{i}\right] s_{\tau}\right)_{[\sigma] \tau} \mid И a_{\sigma} . s_{o}
$$

Assume term-formers:

- $\supset_{(o, o) o}$ implication.
- $=(\sigma, \sigma)_{o}$ equality (one for each σ).
- $\perp_{() o}$ false.
- $\sigma_{\left(\left[\sigma^{\prime}\right] \sigma, \sigma^{\prime}\right) \sigma}$ explicit substitution (one for each σ, σ^{\prime}).

Use standard sugar. $[a] s$ is called abstract a in s, Иa.s is new (or fresh) a in s. $И$ binds, abstraction does not. Write $s[a \longmapsto t]$ for $\sigma([a] s, t)$.

1. \perp_{o} is a truth value. We know what it is and it represents itself.
2. a_{o}^{1} is a variable. It represents a truth value we do not know today, but we will learn whether it is $\top \equiv \perp \supset \perp$ or \perp, tomorrow.
3. X_{o}^{2} is also a variable. We will only find out what it is this evening we may, for example, learn that it is \perp, but we may also learn that it is a.
4. \mathcal{X}_{o}^{3} is also a variable. We will find out what it is, oh, sometime early this afternoon.
5. a_{o}^{1000} is also a variable. Let's find out what it is right now. Any suggestions?

It's lonely standing up here all alone. Look at my sad face. Make me smile!

Some examples

- $[a] a_{o}$ is, well never mind what it is, but write it $*$. It lives in $[o] o$.
- $[a] b$ is just b.
- $[a] X$ waits to find out what X is; if X becomes a then it becomes $[a] a$, if X becomes b it becomes $[a] b$, if X becomes \perp it becomes $[a] \perp$, and so on.
- $f\left(s_{1}, \ldots, s_{n}\right)$ is f applied to s_{1} to s_{n}. No tricks. However, f may become something else as a function of its arguments becoming something else.
- Иa.s generates a fresh a. This will never become anything, but we can use it as a 'generic unknown', e.g. to build $[a] a$ or $[a] X$.
- $a[a \longmapsto b]$ is $b . X[a \longmapsto b]$ is X which has been told that a maps to b. This evening when X becomes something, the substitution $[a \longmapsto b]$ will pounce on it.
- $X[a \longmapsto Y]$ is allowed by the syntax. We simply learn what X and Y become, and whatever the substitution becomes acts on whatever X becomes. No sweat.
- $a[X \longmapsto b]$ is a. By the time a becomes anything else, X is long gone.
$\supset,=$, and \perp are as usual.

Axioms

We now say that all in axioms:

$$
\begin{gathered}
P \supset(Q \supset P)=\top \quad(Q \supset R) \supset(P \supset Q) \supset(P \supset R)=\top \\
\neg \neg P=P \\
f\left(a_{1}[a \longmapsto x], \ldots, a_{n}[a \longmapsto x]\right)=f\left(a_{1}, \ldots, a_{n}\right)[a \longmapsto x] \\
\left(\left[a^{i}\right] x\right)\left[b^{j} \longmapsto y\right]=\left[a^{i}\right]\left(x\left[b^{j} \longmapsto y\right]\right) \quad j>i \\
a^{i} \# y \supset\left(\left(\left[a^{i}\right] x\right)\left[b^{j} \mapsto y\right]=\left[a^{i}\right]\left(x\left[b^{j} \mapsto y\right]\right)\right)=\top \quad i \leq j \\
([a] x)[a \longmapsto y]=[a] x \\
(b \# x \supset[a] x=[b](x[a \longmapsto b]))=\top \\
(b \# x \supset x[a \mapsto b][b \mapsto y]=x[a \mapsto y])=\top \\
a[a \longmapsto x]=x \quad b^{i}\left[a^{i} \longmapsto x\right]=b
\end{gathered}
$$

... just a few more:

$$
\begin{gathered}
a \# a=\perp \quad(\text { Иy. } a \#(X[x \mapsto y]))=a \#[x] X \\
(\text { И } a \cdot \perp)=\perp \\
((\text { И } a . P) \supset Q)=(\text { И } a \cdot(P \supset Q)) \quad a \notin Q \\
(P \supset(\text { И } a \cdot Q))=(\text { И } a \cdot(P \supset Q)) \quad a \notin P \\
(\text { И } a . P)[b \mapsto Q]=\text { Иa. }(P[b \mapsto Q]) \quad a \notin Q \\
(\text { Иa.P })=(\text { И } a \cdot a \# x \wedge P) \quad(\text { И } a . P)=(\text { И } a \cdot x \# a \wedge P) \\
(a \# Y \supset(Y=Y[a \mapsto X]))=\top \quad(X=X)=\top \\
((X=Y) \wedge C[X])=((X=Y) \wedge C[Y])
\end{gathered}
$$

Use $a \# s$ as a macro for $($ Иc. $s[a \longmapsto c])=s$ and say a is fresh for s. As a term-former \# would have arity $([\sigma] o) o$ (one $\#$ for each σ). Intuitively it is clear (is it?) that $a \# s$ means ' a does not occur unabstracted in s '. This statement may transcend syntactic fact, e.g. $a \# X$ is an assertion about what happens this evening.

Then the conditions $a \# x$ scattered about the axioms are simply 'capture-avoidance’ conditions.
$\forall a . \phi \equiv И c .(a \# \phi \wedge \phi[a \mapsto c]) \quad \exists a . \phi \equiv И c .(a \# \phi \supset \phi[a \mapsto c])$
These have the expected behaviour, for example:

$$
\begin{aligned}
& \text { Иc. }(a \# \phi \wedge \phi[a \mapsto c]) \supset \phi[a \mapsto s]= \\
& \text { Иc. }(a \# \phi \wedge(\phi[a \mapsto s]=\phi) \wedge(\phi[a \mapsto c]=\phi) \wedge \phi[a \mapsto c]) \supset \phi[a \mapsto s]= \\
& \text { Иc. } \begin{aligned}
& \text { И }=\top .
\end{aligned}
\end{aligned}
$$

It is possible (and quite interesting!) to verify that $\forall a . \phi=\neg \exists a . \neg \phi$.

Implementing the λ-calculus (algebraically!)

Introduce a term-former $\cdot\left(\left[\sigma^{\prime}\right] \sigma, \sigma^{\prime}\right) \sigma$ and an axiom

$$
([a] X) \cdot Y=X[a \longmapsto Y]
$$

The rest of the system takes care of substitution.
Also possible to directly implement the NEW calculus of contexts, i.e. to add in $И$ and abstract over the full hierarchy of variables. Thus, this ' λ-calculus' is actually a λ-calculus of contexts, with stronger variables playing the contexts.

Records

Fix constants 1 and $2 . l$ and m have level $1, X$ has level 2.
Here is a record:

$$
X[l \mapsto 1][m \longmapsto 2]
$$

Here is record lookup:

$$
\begin{aligned}
X[l \mapsto 1][m \longmapsto 2][X \mapsto m] & =X[l \mapsto 1][X \mapsto m][m \longmapsto 2] \\
& =X[X \mapsto m][l \mapsto 1][m \mapsto 2] \\
& =m[l \mapsto 1][m \longmapsto 2] \\
& =m[m \longmapsto 2] \\
& =2 .
\end{aligned}
$$

In-place update

$$
\begin{aligned}
X[l \mapsto 1][m \mapsto 2][X \mapsto X[l \mapsto 2]] & =X[l \mapsto 1][X \mapsto X[l \mapsto 2]][m \mapsto 2] \\
& =X[X \mapsto X[l \mapsto 2]][l \mapsto 1][m \mapsto 2] \\
& =X[l \mapsto 2][l \mapsto 1][m \mapsto 2] \\
& =X[l \mapsto 2][m \mapsto 2]
\end{aligned}
$$

$(\lambda X . X[l \mapsto \lambda n . n]) \quad$ applied to $\quad l m$

$$
(\lambda X . X[l \mapsto \lambda n . n]) l m=X[l \mapsto \lambda n . n][X \mapsto l m]=(\lambda n . n) m
$$

In-place update as a term

$$
\lambda \mathcal{W} . \mathcal{W}[X \mapsto X[l \mapsto 2]] \quad \text { applied to } \quad X[l \mapsto 1][m \mapsto 2]
$$

\ldots and so on (\mathcal{W} has level 3).
I'm telling you we can proceed to global state (the world is a big hole with state suspended on it, just like a record), and Abadi-Cardelli imp- ε object calculus.

Graphs are speculative; I haven't implemented them. I mentioned it only to give you some idea of the directions I am thinking in. However, this work may have applications to component-based systems, with strong variables controlling how components are 'plugged in'.

The usual higher-order version of the axiom of choice:

$$
\forall x . \exists y .(\phi x y) \Leftrightarrow \exists f . \forall x .(\phi x(f x)) .
$$

May be true of individual ϕ, but the general assertion over all ϕ asserts that there always exists a function picking out some y for each x.

Our 'hierarchy'-based version (I think):

$$
\forall x^{1} . \exists y^{1} . \phi \Leftrightarrow \exists Y^{2} . \forall x .(\phi[y \mapsto Y]) .
$$

Here ϕ is a sufficiently strong variable of sort o. For example (this works even without an axiom, because we have the terms to do it):

$$
(\forall x \cdot \exists y \cdot x=y)=\top . \quad(\exists Y \cdot \forall x \cdot x=Y)=\top
$$

calculations omitted, but basically we substitute Y for x on the right-hand side. This gets captured by the \forall, which is for a weaker (later) variable.

A model of a theory consists of the following data:

1. For each base data sort D, a set $\llbracket D \rrbracket^{\bullet}$. Extend this to all sorts as follows:

$$
\begin{aligned}
& \llbracket S^{\prime} \times S \rrbracket^{\bullet}=\llbracket S^{\prime} \rrbracket^{\bullet} \times \llbracket S \rrbracket^{\bullet} \quad \llbracket\left[S^{\prime}\right] S \rrbracket^{\bullet}=\llbracket S \rrbracket^{\bullet} \cup\{*\} . \\
& \llbracket S \rrbracket^{\bullet} \cup\{*\} \text { adjoins a new element to } \llbracket S \rrbracket^{\bullet}
\end{aligned}
$$

2. For $f:\left(S^{\prime}\right) S$ choose $\llbracket f \rrbracket^{\bullet}$ a function from $\llbracket S^{\prime} \rrbracket^{\bullet}$ to $\llbracket S \rrbracket^{\bullet}$.

Call $\llbracket-\rrbracket^{\bullet}$ the closed section.

Semantics

Define

$$
\mathbb{T}_{\sigma}^{0}=\llbracket \sigma \rrbracket^{\bullet} \quad \mathbb{T}_{\sigma}^{i+1}=\left(\mathbb{V}^{i+1} \xrightarrow{\text { fin }} \mathbb{T}^{i}\right) \xrightarrow{\text { fin }} \mathbb{T}_{\sigma}^{i}
$$

Write \mathbb{T}^{i} for $\bigcup_{i} \mathbb{T}_{\sigma}^{i}, \mathbb{T}_{\sigma}$ for $\bigcup_{\sigma} \mathbb{T}_{\sigma}^{i}$, and \mathbb{T} for $\bigcup_{i, \sigma} \mathbb{T}_{\sigma}^{i}$.
I am afraid that all the hard work is hidden in the definition of $\xrightarrow{\text { fin }}$, and in proving its (excellent) properties. That's what took me six months to work out. I shall conclude by sketching the construction...

Write $\pi \in \mathbb{P}$ for level-preserving finitely supported bijections on
variables. π is a bijection such that:

- $\pi(a)$ has the same level as a always (whence 'level-preserving').
- $\pi(a)=a$ for all variables, except for some finite set (whence 'finitely supported').

Write Id for the identity permutation mapping a to a always. Write composition of permutations $\pi \circ \pi^{\prime}$. This is given by functional composition.

A \mathbb{P}-action on \mathbb{S} is $\mathbb{P} \times \mathbb{S} \rightarrow \mathbb{S}$, write it infix as $\pi \cdot s$, such that $\pi \cdot\left(\pi^{\prime} \cdot s\right)=\left(\pi \circ \pi^{\prime}\right) \cdot s$ and $\mathbf{I d} \cdot s=s$.

Say $s \in \mathbb{S}$ is supported by A a set of variables when if $\pi(a)=\pi^{\prime}(a)$ for all $a \in A$ then $\pi \cdot s=\pi^{\prime} \cdot s$ (say that A supports s). Say \mathbb{S} has finite support when all its elements have a finite supporting set.

Lemma: Suppose S has a finitely supported \mathbb{P}-action and $s \in S$.
Then:

1. s has a unique smallest finite supporting set; call it the support of s and write it $\operatorname{supp}(s)$.
2. $a \in \operatorname{supp}(s)$ if and only if for all but finitely many $b,(b a) \cdot s=s$.
3. $a \in \operatorname{supp}(s)$ if and only if for any other $b \notin \operatorname{supp}(s),(c b) \cdot s=s$.

The typical example of a set with a \mathbb{P}-action is a set of syntax, where π acts literally on the variables mentioned in the syntax; then (finite) syntax is obviously supported by the finite set of variables mentioned in its syntax.

Functions $f \in \mathbb{S} \rightarrow \mathbb{S}^{\prime}$ have a \mathbb{P}-action given by $(\pi \cdot f)(\pi \cdot s)=\pi \cdot(f(s))$.
E.g. in \mathbb{T}^{i} above $\kappa \in \mathbb{V}^{i} \rightarrow \mathbb{S}$ has a natural permutation action given by $(\pi \cdot \kappa)(\pi \cdot a)=\pi \cdot \kappa(a)$.

Write $\mathbb{V}^{i} \xrightarrow{\text { fin }} \mathbb{S}$ for the set of finitely supported functions from \mathbb{V}^{i} to \mathbb{S}.
$\tau \in\left(\mathbb{V}^{i} \xrightarrow{\text { fin }} \mathbb{S}\right) \rightarrow \mathbb{S}^{\prime}$ also has a natural permutation action. Write $\left(\mathbb{V}^{i} \xrightarrow{\text { fin }} \mathbb{S}\right) \xrightarrow{\text { fin }} \mathbb{S}^{\prime}$ for the set of τ such that:

1. τ has a finite supporting set.
2. There exists some finite $A \subseteq \mathbb{V}^{i}$ such that if κ and κ^{\prime} agree on A then $\tau(\kappa)=\tau\left(\kappa^{\prime}\right)$ (we say that τ has no asymptotic behaviour).

The intuition is that τ only examines a finite part of κ; it must 'ignore what κ does to most variables'.

The fundamental result

If τ examines arguments κ at a then for all but finitely many b, $(a b) \cdot \tau \neq \tau$.

- $\llbracket a^{i} \rrbracket^{i}=\lambda \kappa^{i} . \kappa(a)$.
- $\llbracket a^{i} \rrbracket^{j}=\lambda \kappa^{j} . \llbracket a \rrbracket^{j-1}$ for $j>i$.
- $\llbracket a^{i} \rrbracket^{j}$ is not defined for $j<i$.
- Write $\llbracket f \rrbracket^{0}$ for $\llbracket f \rrbracket^{\bullet}$.
- Define $\llbracket f \rrbracket^{i}: \llbracket S_{1} \rrbracket^{i} \times \cdots \times \llbracket S_{n} \rrbracket^{i} \rightarrow \llbracket S \rrbracket^{i}$ by

$$
\llbracket f \rrbracket^{i} \kappa^{i}=\lambda \tau_{1} \in \llbracket S_{1} \rrbracket^{i} \cdots \tau_{n} \in \llbracket S_{n} \rrbracket^{i} . \llbracket f \rrbracket^{i-1}\left(\tau_{1} \kappa, \ldots, \tau_{n} \kappa\right) .
$$

- Then $\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{i} \kappa^{i}=\llbracket f \rrbracket^{i}\left(\llbracket t_{1} \rrbracket^{i} \kappa, \ldots, \llbracket t_{n} \rrbracket^{i} \kappa\right)$ whenever $\llbracket t_{1} \rrbracket^{i}, \ldots, \llbracket t_{n} \rrbracket^{i}$ are all defined, and is undefined otherwise.

Semantics (sketched some more)

- $\llbracket[a\rfloor t \rrbracket^{i}=[a] \llbracket t \rrbracket^{i}$ provided that a has level at most i, and $\llbracket t \rrbracket^{i}$ is defined.
- Write \perp for $\llbracket \perp \rrbracket^{i}$, for any i. Write \top for $\llbracket \perp \supset \perp \rrbracket^{i}$.
- $\llbracket s=t \rrbracket^{i}$ is undefined if $\llbracket s \rrbracket^{i}$ or $\llbracket t \rrbracket^{i}$ is undefined. If they are defined then $\llbracket s=t \rrbracket^{i}=\top$ if $\llbracket s \rrbracket^{i}=\llbracket t \rrbracket^{i}$ and $\llbracket s=t \rrbracket^{i}=\perp$ otherwise.
- If $\llbracket t \rrbracket^{i}$ is not defined or $j>i$ then $\llbracket a^{j} \# t \rrbracket^{i}$ is not defined. Otherwise: $\llbracket a \# t \rrbracket=\top$ if $a \# \llbracket t \rrbracket^{i}$, and $\llbracket a \# t \rrbracket=\perp$ if $a \# \llbracket t \rrbracket^{i}$.

I have given an equational system with the power to express some sophisticated concepts in terms of a few basic primities (abstraction and $И$, plus predicate logic, and of course the hierarchy of variables).

The real difference from higher-order frameworks (e.g. HOL) is that in HOL we say what can appear in a term (by applying that term to the argument). In this system (what to call it?), we say what cannot appear in a term (by asserting a freshness \# or choosing the levels right).

Finally, I have given a semantics which has a simple intuition (tomorrow, this evening, this afternoon) but really quite subtle to get right - though I have not gone into details.

