
a-logic

Murdoch J. Gabbay

Joint work with Michael J. Gabbay

University of Amsterdam, Amsterdam, 22/11/2005

Thanks to Johan van Benthem and Olivier Roy for inviting me

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 1

Syntax of a-logic

a-logic is First-Order Logic, predicates inductively defined by:

φ, ψ ::= ⊥ | p(t1, . . . , tn) | ∀x. φ | φ ⊃ φ

p are atomic predicate symbols (with arity n). Term language is

arbitrary; suppose it has numbers.

a-logic has one distinguished unary atomic predicate symbol at , read

‘atom’.

Intuitively:

at (x) is ‘true’ at (3) is ‘false’.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 2

Sequents of a-logic

A context Γ is a finite set of predicates. So is a cocontext ∆. A sequent

is a pair Γ ` ∆. Valid sequents are inductively defined by (the usual

rules and):

(s not a variable symbol)
(atL)

Γ,at s ` ∆

Γ, at a ` ∆
(Fresh)

Γ ` ∆

(In (Fresh), a 6∈ Γ,∆.)

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 3

Example derivations

(atL)
at (3) `

. . . is valid, since 3 is not a variable symbol.

(FALSE)
at (x) `

. . . is not valid, since x is a variable symbol.

(Fresh) says ‘an atom exists’, more on that later. . .

(⊃ L)
at b, ¬at b `

(∀L)
at b, ∀a. ¬at a `

(Fresh)
∀a. ¬at a `

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 4

Substitution lemma

Necessary for cut-elimination, and important correctness result stating

‘variables really do represent unknown terms’:

Lemma:

Γ ` ∆ derivable implies Γ[a7→u] ` ∆[a7→u] is derivable.

Proof (sketched):

Observe that the property of not being a term is invariant under

substitution. Therefore if

(atL)
Γ, at s ` ∆

is valid, then so is

(atL).
Γ[a7→u], at s[a7→u] ` ∆[a7→u]

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 5

a-logic as a First-Order Logic theory

(atL) is equivalent to ∀x. ¬at fx for each term-former f .

(Fresh) is equivalent to ∃a. at a.

Easy-peasy!

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 6

a-logic axioms of substitution

〈suspension of disbelief〉

Let explicit substitution u〈a7→x〉 be a ternary term-former.

Then

a#u is sugar for at a ∧ ∀x. u〈a7→x〉 = u

and expressed ‘a is not free in u’.

〈/suspension of disbelief〉

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 7

a-logic axioms of substitution

at a ⊃ u〈a7→a〉 = u at a ⊃ a〈a7→x〉 = x

at a ∧ at b ⊃ (a 6= b⇔ a#b)

at a ∧ b#u ⊃ u〈a7→b〉〈b7→y〉 = u〈a7→y〉

at a ∧ a#x ⊃ a#u〈a7→x〉

at b ∧ a#b ∧ a#y ⊃ u〈a7→x〉〈b7→y〉 = u〈b7→y〉〈a7→x〈b7→y〉〉

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 8

Provably closed

Write

•s for ∀a. at a ⊃ a#s

This says ‘s is (provably) closed’.

•s does not imply that s is actually closed viewed as syntax.

For example, from •x we may derive •x — but x is a variable.

Similarly,
•x
·
·
·

∀a. at a ⊃ •(a〈a7→x〉)

but a〈a7→x〉 clearly has free variables a and x.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 9

a-logic axioms of the λ-calculus

(α) ∀a, b, x, y. at a ∧ b#x ⊃ λa.x = λb.x〈a7→b〉

(β) ∀a, x, y. at a ∧ •y ⊃ (λa.x)y = x〈a7→y〉

(ξ) ∀x, y. •x ∧ •y

⊃ (∀z. •z ⊃ xz = yz) ⊃ x = y

(σλ) ∀a, b, x, y. at b ∧ a#y ⊃ (λa.x)〈b7→y〉 = λa.(x〈b7→y〉)

(σapp) ∀a, x, y, z. at a ⊃ (xy)〈a7→z〉 = (x〈a7→z〉)(y〈a7→z〉)

(#app) ∀x, y. ∃a. a#x ∧ a#y

∧ ∀b. (b#axy ⇔ (b#a ∧ b#x ∧ b#y))

(Recall that a#x implies at a.)

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 10

Meaning of the axioms

• (α) ∀a, b, x, y. at a ∧ b#x ⊃ λa.x = λb.x〈a7→b〉:
α-equivalence, obviously.

• (β) ∀a, x, y. at a ∧ •y ⊃ (λa.x)y = x〈a7→y〉:
β-equivalence, but only for provably closed terms.

• (ξ) ∀x, y. •x ∧ •y ⊃ (∀z. •z ⊃ xz = yz) ⊃ x = y:

How do we test whether two λ-abstractions are equal? Provided

they are provably closed, they can β-reduce, so apply them to equal

arguments.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 11

Meaning of the axioms

• (σλ) ∀a, b, x, y. at b ∧ a#y ⊃ (λa.x)〈b7→y〉 =
λa.(x〈b7→y〉):

How to distribute substitution under λ. Note works also for open

terms.

• (σapp) ∀a, x, y, z. at a ⊃ (xy)〈a7→z〉 =
(x〈a7→z〉)(y〈a7→z〉):

How to distribute substitution under application. Again, works also

for open terms.

• (#app) ∀x, y. ∃a. a#x ∧ a#y ∧ ∀b. (b#axy ⇔
(b#a ∧ b#x ∧ b#y)):

Believe it or not, this says “there are infinitely many atoms”.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 12

“There are infinitely many atoms”

(#app) ∀x, y. ∃a. a#x ∧ a#y ∧ ∀b. (b#axy ⇔
(b#a ∧ b#x ∧ b#y)):

Think of axy as ‘the pair (x, y) at a’, write it (x, y)a.

By (Fresh) there is an atom a. We get b#a from (a, a)b. Then

c#a, b from (b, (a, a))c, and so on. Similarly for any {x1, . . . , xn}
we generate a#x1 from (x1, x1)a, and b#a, x1, x2 from

(x2, (x1, x1)a)b, and so on.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 13

This axiomatisation is correct in a suitable formal sense:

Lemma: From a FOL model of alogic + sub + lambda we obtain a

λ-model by taking {p | •p}.

(An ‘extensional combinatory algebra’ is a model of the FOL theory

ECA

∀x, y. kxy = x sxyz = (xy)(xz)

∀x, y. (∀z. xz = yz) ⊃ x = y.)

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 14

Models of lambda to models of ECA

Pick a, b, c distinct (so a#b, b#c, and a#c are all derivable). Set

s ≡ λabc.(ab)(ac)

k ≡ λab.a

We can prove:

• •s and •k.

• λabc.(ab)(ac) = λa′b′c′.(a′b′)(a′c′), so s is canonical.

• Likewise λab.a = λa′b′.a′.

• spqr = (pq)(pr) and kpq = p.

• ∀p, q. (∀r. pr = qr) ⊃ p = q.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 15

The reverse direction

Just take formal sentences over the extensional λ-model, quotiented by

the axioms of lambda in a suitalbe (slightly subtle) sense. Details

omitted.

ECA to lambda to ECA: we get back where we started.

lambda to ECA to lambda: we may lose some equalities on open

terms.

For example, consider a model such that

∀a, b. at a ∧ at b ⊃ (λa.a)b = b

We lose this identity.

“The map from ECA to lambda throws away the internal

meta-language”.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 16

Some observations

• Unknown λ-terms are variables.

• Unknown λ-term variables are atoms.

• ‘Real’ λ-terms are provably closed.

• Explicit substitution acts also for open term and is part of the

internal meta-language.

• Rules

(β′) ∀a, x, y. at a ∧ ¬at y ⊃ (λa.x)y = x〈a7→y〉

(ξ′) ∀x, y. ¬atx ∧ ¬at y ⊃ (∀z. •z ⊃ xz = yz) ⊃ x = y

are reasonable; they just equate more terms of the internal

meta-language.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 17

Essentially a term

This is wrong:

(βFALSE) ∀a, x, y. at a ⊃ (λa.x)y = x〈a7→y〉

Sneakily did not mention ‘essentially a term’.

In order to avoid contradiction from at a ⊃ a〈a7→a〉 = a, we must

suspend (atL) for some term-formers.

See the paper.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 18

Interesting solution

Instead of equality, use a ‘is more defined than’ relation . Then

a〈a7→a〉 a.

Have investigated this somewhat. Suggests an interesting class of

models of the λ-calculus.

One advantage of this is that it enables us to express Hilbert’s arbitrary

choice operator.

Sadly, did not make it into the paper.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 19

Semantics

A semantics of a-logic is easy to construct via its FOL axiomatisation.

However a direct semantics is also possible. Variables are first-class

elements of the domain, and at is a predicate which is true at most on

variables (though not necessarily on all of them).

Essentially the same idea is a Kripke structure of ‘increasingly defined’

valuations on variables. atx determines whether at the present world x

has been assigned a value or not.

None of this made it into the paper!

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 20

Conclusions

a-logic is a first-order logic (axiomatisation) with interesting expressivity.
It suggests a class of models where ‘generic elements’ (the atoms) form
part of the underlying domain.

You can do with generic elements what you do with ‘provably closed’
elements; there is some flexibility to the strength of the admissible
theory of equality between elements containing generic elements.

There are also some interesting logical limits to how far that equality can
be pushed while avoiding inconsistency, and interesting thoughts about
how we might overcome these, if we wish.

lambda is close to Beeson’s Otter2 theorem-prover. Beeson makes a
case for Otter2 (meta-language FOL, object-language untyped
λ-calculus) as a good theorem-proving environment. However Otter2
terms are hard-wired; lambda axioms can be programmed in almost
any current theorem-prover.

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 21

Things to be done!

a-logic University of Amsterdam, Amsterdam, 22/11/2005. 22

