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Universal Algebra

Algebra is great, because it is so simple. There is only one judgement

form, t = u (t is equal to u).

Equality is an equivalence relation:

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

Also, equal elements are equal, and thus interchangeable:

t = u
(cong)

C[t] = C[u]
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Universal Algebra

A theory is just a finite set of equalities.

A model of algebra is just a set with associated functions, one for each

function symbol in the language of the terms between which we

asserted the equalities, such that the equalities asserted are valid.

A classic example is the theory of groups. Three function symbols: ·
composition, 1 the unit, and -−1 inverse. Axioms are:

x ·(y ·z) = (x ·y) ·z x ·1 = 1 ·x = x x ·x−1 = x−1 ·x = 1

You could easily come up with plausible axioms for rings and fields.
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Boolean Algebras

Binary term-formers ∧ and ∨, unary term-formers ¬, constants 0 and

1. Axioms are:

x ∨ y = y ∨ x x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ x = x x ∧ x = x

x = x ∨ (x ∧ y) x = x ∧ (x ∨ y)

x ∧ 0 = 0 x ∨ 1 = 1 x ∧ ¬x = 0 x ∨ ¬x = 1

The simplest model of this is the two-element set {0, 1}. 0 is 0, 1 is 1,

¬ is ‘swap 0 and 1’, ∧ is min and ∨ is max.

Theorems of the model theory of Universal Algebra state that, up to

putting models together like lego (cross product, basically), this is the

only model.
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Typical theorem of Universal Algebra

My favourite algebraic theory has terms t and u in it of which I can

prove t = u. I know by [Theorem] that any algebra satisfying t = u has

a certain property of its models. Therefore, this favourite model of my

theory has that property.

Thus we have gone from properties of (a very simple logic) to properties

of (possibly very complex) sets.

More generally, the form of a logical assertion dictates under what

operations on models of that assertion the assertion remains valid. The

simpler the assertion, the more things we can do to the model. The very

simplicity and atomicity of the assertion t = u gives it great power.
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Oh yes, and by the way. . .

. . . algebra is good for theorem-provers as well, because nearly every

theorem-prover has an equality, and the validity of an equality depends

only on the form of t and u, in particular on whether t = u can be

derived.

Thus the algorithmics of proving t = u is reduced to the algorithmics of

using the axioms to rewrite t to u.
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Cylindric algebra (CA)

Variables are p, q, r. Binary term-formers ∧ and ∨. Unary term-formers

¬ and ci for i ∈ N. Constants dij for i, j ∈ N, also 0 and 1.

p ∧ 0 = 0 p ∨ 0 = p p ∧ 1 = p p ∨ 1 = 1

p ∧ ¬p = 0 p ∨ ¬p = 1 ci0 = 0 p ∧ cip = cip

ci(p ∧ ciq) = cip ∧ ciq dii = 1

dik = cj(dij ∧ djk) ci(dij ∧ p) ∧ ci(dij ∧ ¬p) = 0.

Isn’t maths great.
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In other terms

Choose some countably infinite set a, b, c, . . . in bijection with N. Write:

• ∃a for ca.

• a≈b for dab.

Then the axioms become:

P ∧ 0 = 0 P ∨ 0 = P P ∧ 1 = P P ∨ 1 = 1

P ∧ ¬P = 0 P ∨ ¬P = 1 ∃a.0 = 0 P ∧ ∃a.P = ∃a.P

∃a.(P ∧ ∃a.Q) = ∃a.P ∧ ∃a.Q

(a≈a) = 1

(a≈c) = ∃b.((a≈b) ∧ (b≈c))

∃a.((a≈b) ∧ P ) ∧ ∃a.((a≈b) ∧ ¬P ) = 0.
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Notes

• P,Q represent unknown predicates.

• There is no term language — the only terms are the ‘variable

symbols’ a, b, c.

• ≈ is a formal equality symbol inside the language; that’s one reason

we wrote it dab originally.
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Nominal Algebraic Specifications (NAS) sorts

Sorts serve to partition the model into distinct sets with functions

between them (rather than just one set with functions to itself, as is the

case for groups.

Fix base sorts F of formulae and T of terms. Fix an atomic sort A.

Sorts τ and arities ρ are defined by the following grammars:

τ ::= δ | A | [A]δ ρ ::= (τ1, . . . , τn)δ

Here n may be zero. We indicate sorts and arities with subscripts.

Let aA, bA, cA, . . . and Xτ , Yτ , Zτ , . . . be disjoint countably infinite

sets of formal symbols we call atoms and variables respectively.

Let the a, b, c, . . . from cylindric algebras correspond to atoms. Let the

p, q, r from cylindric algebras correspond to variablesXF, YF, ZF.
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NAS terms

We have to formally define what a term is — we did not do it before, but

the definition was still lurking in the background. A term is still a term.

Term-formers have arities as shown in subscripts:

⊥F ⊃(F,F)F ∀([A]F)F var(A)T σ([A]F,T)F ≈(T,T)F

(Equality comes later.)

Terms t, u, v, w are:

t ::= aA | (π ·Xτ )τ | [aA]tτ | (f(τ1,...,τn)δ(t
1
τ1
, . . . , tnτn

))δ

(π ·Xτ )τ is a moderated variable. π is a finitely supported permutation

of atoms, i.e. a bijection on atoms such that for finitely many atoms

π(a) 6= a (possibly none), and for all the others π(a) = a.

Without sorts: t ::= a | π ·X | [a]t | f(t1, . . . , tn).

Here f ∈ {⊥, ⊃, ∀, var, σ, ≈}.
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Freshness assertion

A freshness assertion is a pair a#t of an atom and a term. Here is how
we derive them:

(#ab)
a#b

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)
(#[]a)

a#[a]t

a#t
(#[]b)

a#[b]t

π−1 · a#X
(#X)

a#π ·X

[a#t1, . . . , a#tn]
·
·
·
E

(Fr) (a 6∈ E, t1, . . . , tn)
E

The condition on (Fr) expresses that atom a does not occur in the

equation E and any of the terms t1, . . . , tn.

A freshness context ∆ is a finite set {a1#X1, . . . , an#Xn}.
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Axioms

• Call tτ = uτ a equality E.

• Call a triple ∆ → t = u an axiom. If ∆ = ∅ we may write just

t = u.

Here are our axioms!

The core theory CORE.

(var) a, b#X → (a b) ·X = X

Explicit substitution SUB.

f(Z1, . . . , Zn)[a7→X] = f(Z1[a7→X], . . . , Zn[a7→X])

b#X → ([b]Y )[a7→X] = [b](Y [a7→X])

var(a)[a7→X] = X a#Z → Z[a7→Y ] = Z

Z[a7→var(a)] = Z
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More axioms

P ⊃ Q ⊃ P = > ¬¬P ⊃ P = >(Props)

(P ⊃ Q) ⊃ (Q ⊃ R) ⊃ (P ⊃ R) = > ⊥ ⊃ P = >

∀[a]> = > ∀[a]P ⊃ P [a7→Q] = >(Quants)

∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

a#P → ∀[a](P ⊃ Q) ⇔ (P ⊃ ∀[a]Q) = >

X≈X = > X≈Y ⊃ P [a7→X] ⇔ P [a7→Y ] = >.(Equal)
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Derivability for equalities

Define a notion of derivability on equalities as follows:

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v
t = u

(cong)
C[t] = C[u]

∆πσ
(axA)

tπσ = uπσ
A ≡ ∆ → t = u

Here C[-] is ‘a term with a hole’. -π denotes the term obtained by

actually applying π to that term.
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Some theorems:

• First-order logic as we know it corresponds to closed terms of our

NAS theory, up to provable equality.

• Cylindric algebra corresponds to cylindric terms; possibly open

terms of our NAS theory which do not mention explicit substitution

or permutation (plus other minor conditions), up to provable equality.

‘Closed’ means ‘mentions no variables’. This is where people come

unstuck. Importantissimo to distinguish between:

• Object-level variable symbols a, b, c and object-level equality ≈ and

abstraction [a]- and explicit substitution t[a7→u] and

• meta-level variable symbols X,Y,Z , meta-level equality =, and

meta-level substitution C[t].
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Proofs

How do we set about proving something like this? First, set up the

translations. They are pretty obvious really, we give just two examples:

• ∀a. a = a in FOL maps to ∀[a](var(a)≈var(a)) in (this particular

theory of) NAS.

• Conversely a closed term, e.g. (var(a)≈var(b))[a7→var(b)] maps

to b = b in FOL.

• The translation between cylindric algebras and NAS is direct. ca

corresponds to ¬∀[a]¬ and dab to var(a)≈var(b). Variables PF

correspond with variables P .
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Problem

The next step is to prove by induction on NAS derivations/ FOL

derivations/ CA derivations that these transations preserve provable

equivalence and are self-inverse up to provable equality.

The difficulty is
t = u u = v

(tran)
t = v

.

Oh it looks so innocent. But think about it:

Our characterisation of FOL and CA in NAS was syntactic. But u

appears above the line; it need be neither closed, nor cylindric, and it

may exploit the full complexity of the NAS theory of first-order logic to be

equal to t and v.

“(tran) is not syntax-directed.”
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Beautiful solution

Write φ and ψ for terms of sort F. Write Φ and Ψ for finite sets of

{φ1, . . . , φj} and {ψ1, . . . , ψk}. Write

Φ ` ∆ Ψ for ∆ ` (φ1 ∧ · · · ∧ φj ⊃ ψ1 ∨ · · · ∨ ψk) = >.

Then we prove that the following sequents are justified in NAS (theory of

FOL with equality). . .
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Beautiful solution

(Axiom)
Φ, φ ` φ, Ψ

(⊥L)
Φ, ⊥ ` Ψ

Φ, φ ` ψ, Ψ
(⊃R)

Φ ` φ ⊃ ψ, Ψ

Φ ` φ, Ψ Φ, ψ ` Ψ
(⊃L)

Φ, φ ⊃ ψ ` Ψ

Φ ` ∆ φ, Ψ ∆ ` a#Φ,Ψ
(∀R)

Φ ` ∀a.φ,Ψ

Φ, φ′

` ∆ Ψ ∆ ` SUB φ
′ = φ[a7→t]

(∀L)
Φ, ∀a.φ ` Ψ

Φ, φ ` ∆ ψ, Ψ ∆ ` SUB φ = φ
′ ∆ ` SUB ψ = ψ

′

(Struct)
Φ, φ′

` ∆ ψ
′

, Ψ

Φ ` φ, Ψ Φ, φ ` Ψ
(Cut)

Φ ` Ψ
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Beautiful solution

That’s pretty easy. But we also show that any valid derivation in that

sequent system has a cut-free derivation.

All our results follow, because now induction on derivations is

syntax-directed.
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Conclusions

Algebra is a useful tool. However, it is limited in its treatment of binding.

By extending universal algebra with stuff for binding we have been able

to give an interesting algebraisation of first-order logic, and one which

follows the usual sequent-style presentation so closely that we can use

techniques from sequent presentations (cut-elimination) to prove results

about the algebraic system.

I claim that the model theory of universal algebra is valid for NAS, in the

universe of Fraenkel-Mostowski sets. I have not yet proved this, but

supporting evidence is a sound and complete semantics for Fresh Logic

in FM sets (see [Gabbay ‘Fresh Logic’]). Fresh Logic is (pretty much) a

strict superset of NAS.
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