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First-Order Logic (FOL)

Fix countably infinitely many variable symbols a, b, c, . . .. Let terms be:

t ::= a

Formulae or predicates are:

φ ::= ⊥ | φ ⊃ φ | ∀a.φ | t ≈ t′.

Write ≡ for syntactic identity.
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Derivation

A context Φ and cocontext Ψ are finite and possibly empty sets of

formulae.

A judgement is a pair Φ ` Ψ of a context and cocontext.

Valid judgements are inductively defined by:

(Axiom)
φ, Φ ` Ψ, φ

(⊥L)
⊥, Φ ` Ψ

(⊃R)
φ, Φ ` Ψ, ψ

Φ ` Ψ, φ ⊃ ψ
(⊃L)

Φ ` Ψ, φ ψ, Φ ` Ψ

φ ⊃ ψ, Φ ` Ψ

(∀R)
Φ ` Ψ, ψ

Φ ` Ψ, ∀a.ψ
a fresh for Φ,Ψ (∀L)

φ[a7→t], Φ ` Ψ

∀a.φ, Φ ` Ψ
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Hang on a moment

What are φ and ψ?

They are meta-variables ranging over formulae.

What are t and a?

They are meta-variables ranging over terms and variable symbols.

What is φ[a7→t]?

It is a meta-level operation which is only well-defined once we have a

real predicate, a real variable symbol, and a real term.

What is ‘a fresh for Φ and Ψ’?

It is a meta-level condition which is only well-defined once we have a

real context and cocontext.
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Schema

Quite a lot of things happen in the meta-level in First-Order Logic (FOL).

For example the following sequent

` ∀a. ∀b. φ⇔ ∀b. ∀a. φ

is derivable for every value of the meta-variable φ:

(Axiom)
φ ` φ

(∀L)
∀b. φ ` φ

(∀L)
∀a. ∀b. φ ` φ

(∀R)
∀a. ∀b. φ ` ∀a. φ

(∀R)
∀a. ∀b. φ ` ∀b. ∀a. φ

One-and-a-halfth-order Logic Utrecht University, Utrecht, 2/12/2005. 5



Schema

However, the fact that this happens for all φ cannot be expressed in

FOL.

Here are some other nice theorems:

1. t ≈ t′ ` φ[a7→t] ⇔ φ[a7→t′].

2. If a 6∈ fv(φ) then ` (∀a. φ) ⇔ φ.
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Logic of higher orders

This is often taken as an argument for higher-order logic (HOL).

In HOL, propositions have a type o and ∀σ is a constant with type

(σ→o)→o, write just ∀ or ∀ : (σ→o)→o.

Then a derivation of

` ∀λf.
(

∀λa.∀λb.fab⇔ ∀λb.∀λa.fab
)

expresses that

` ∀a. ∀b. φ⇔ ∀b. ∀a. φ

holds for all φ, in one derivable sequent.

Here f has function type. If a : σ and b : τ then f : σ→τ→o and

‘fab is φ’.
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Logic of higher orders

Similarly:

1. t ≈ t′ ` φ[a7→t] ⇔ φ[a7→t′] in one-and-a-halfth-order logic

becomes

t ≈ t′ ` ∀λf.
(

ft⇔ ft′
)

.

in HOL.

Note the types: f has function type and if t : σ then f : σ→o and

∀ : ((σ→o)→o)→o.

2. If a 6∈ fv(φ) then ` ∀a. φ⇔ φ in one-and-a-halfth-order logic is

not expressible in HOL.
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Schema

One-and-a-halfth order logic addresses these problems in a different

way.

We can state and prove our ‘test examples’ as single, derivable

sequents.

This is reminiscent of algebraisations of first-order logic (such as

cylindric algebra).
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Here goes

Sorts are defined by:

σ ::= F | T | [A]σ

We call F formulae, we call T terms, and we call A atoms.

Fix atoms a, b, c, . . ., and variables T,U,X, Y, . . .. Atoms all have

sort A. Variables may have any sort, but we tend to let T and U have

sort T (we call them term variables) and X and Y have sort F (we call

them predicate variables).
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Here goes

Permutations π are finitely-supported bijections on atoms. A bijection is

finitely supported when π(a) 6= a for some finite set of atoms a, but for

all other atoms π(b) = b.

(So π is ‘mostly’ the identity.)

Terms are:

t ::= aA | (π ·Xσ)σ | ([aA]tσ)[A]σ |

(∀t[A]F)F | (tF ⊃ tF)F | ⊥F | (tT ≈ tT)F |

sub(t[A]σ, sT)σ.

We tend to write sub([a]t, s) as t[a7→s].
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Some example terms

Write ¬φ for φ ⊃ ⊥, write φ ∧ φ′ for ¬(φ ⊃ ¬φ′), write φ⇔ φ′ for

(φ ⊃ φ′) ∧ (φ′ ⊃ φ), write φ ∨ φ′ for (¬φ) ⊃ φ′, write > for

⊥ ⊃ ⊥.

1. ∀[a]∀[b]X ⇔ ∀[b]∀[a]X .

2. T ≈ T ′.

3. X[a7→T ] ⇔ X[a7→T ′].

4. ∀[a]X ⇔ X .
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Meaning of ‘free variables of’ with predicate unknowns X .

A freshness F ≡ a#t is a pair of an atom and a term.

(#ab)
a#b

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)
(#[]a)

a#[a]t

a#t
(#[]b)

a#[b]t

π−1 · a#X
(#X)

a#π ·X

Let ∆ be a set of freshnesses. Write ∆ ` F when F follows from ∆
(say ∆ entails F ).

Here f is semi-formal; f ∈ {∀,⊃,⊥,≈, sub}.
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Sequent derivation rules

(Axiom)
φ, Φ

∆̀
Ψ, φ

(⊥L)
⊥, Φ

∆̀
Ψ

Φ
∆̀

Ψ, φ ψ, Φ
∆̀

Ψ
(⊃L)

φ ⊃ ψ, Φ
∆̀

Ψ

φ, Φ
∆̀

Ψ, ψ
(⊃R)

Φ
∆̀

Ψ, φ ⊃ ψ

φ′, Φ
∆̀

Ψ φ′ `
SUB

∆
φ[a7→t]

(∀L)
∀[a]φ, Φ

∆̀
Ψ

Φ
∆̀

Ψ, ψ ∆ ` a#Φ,Ψ
(∀R)

Φ
∆̀

Ψ, ∀[a]ψ
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Em. . . just a few more sequent derivation rules

(≈R)
Φ ` Ψ, t ≈ t

φ′, Φ ` Ψ φ′ `
SUB

∆
φ′′[a7→t′] φ `

SUB

∆
φ′′[a7→t]

(≈L)
t′≈t, φ, Φ

∆̀
Ψ

φ′, Φ
∆̀

Ψ φ′ `
SUB

∆
φ

(StructL)
φ, Φ

∆̀
Ψ

Φ
∆̀

Ψ, ψ′ ψ′ `
SUB

∆
ψ

(StructR)
Φ

∆̀
Ψ, ψ

We will discuss `SUB

later.
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Example derivations

∀[a]∀[b]X ` X a#∀[b]X
(∀R)

∀[a]∀[b]X ` ∀[a]X b#∀[a]∀[b]X
(∀R)

∀[a]∀[b]X ` ∀[b]∀[a]X

(Axiom)
X ` X X `

SUB

X[b7→b]
(∀L)

∀[b]X ` X ∀[b]X `
SUB

(∀[b]X)[a7→a]
(∀L)

∀[a]∀[b]X ` X

Semantics in FOL:

“For all φ and ψ, ∀a. ∀b. φ ` ∀b. ∀a. ψ.”
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More of the derivation

(#[]a)
b#[b]X

(#f)
b#∀[b]X

(#[]a)
b#[a]∀[b]X

(#f)
b#∀[a]∀[b]X
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Another example derivation

(Axiom)
X[a7→T ′] ` X[a7→T ′]

X[a7→a][a7→T ′] `
SUB

X[a7→T ′],

X[a7→a][a7→T ] `
SUB

X[a7→T ]
(≈L)

T ′ ≈ T, X[a7→T ] ` X[a7→T ′]

Semantics in FOL:

“For all t and t′ and φ, t′ ≈ t, φ[a7→t] ` φ[a7→t′].”
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One more example derivation

(Axiom)
X

∆̀
X a#X ` a#X

(∀R)
X

à#X
∀[a]X

Semantics in FOL:

“For all φ and a, if a 6∈ fv(φ) then φ ` ∀a. φ.”
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A nice theorem:

Φ
∆̀

Ψ, φ φ, Φ
∆̀

Ψ
(Cut)

Φ
∆̀

Ψ

Theorem (cut-elimination): Cut is eliminable.

The cut-elimination procedure is almost standard — but details of

α-renaming form part of the derivation.
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Meaning of `SUB

Write t `SUB

∆
u when t = u is derivable from assumptions ∆ using the

following axioms:

(f 7→) f(u1, . . . , un)[a7→t] = f(u1[a7→t], . . . , un[a7→t])

([b]7→) b#t→([b]u)[a7→t] = [b](u[a7→t])

(var 7→) a[a7→t] = t

(u7→) a#u→u[a7→t] = u

(ren7→) b#u→u[a7→b] = (b a) · u

(perm) a, b#t→(a b) · t = t
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Permutation action

π · a ≡ π(a) π · (π′ ·X) ≡ (π ◦ π′) ·X

π · [a]t ≡ [π(a)](π · t)

π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)
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Some more nice theorems:

Theorem: First-order logic corresponds in a natural and formal sense

precisely to closed terms (terms mentioning no variables), like

∀[a](a ≈ a).

Theorem: Cylindric algebra corresponds in a natural and formal sense

precisely to cylindric terms (terms possibly mentioning variables, but not

mentioning substitution), like a ≈ b (corresponding to ‘dab’ in cylindric

algebras) or ¬∀[a]¬X (‘caX ’).

One-and-a-halfth-order Logic Utrecht University, Utrecht, 2/12/2005. 23



Relation to HOL

Not direct since we can express a#t and HOL cannot.

Also, suppose X : o and t : T. Then X[a7→t] corresponds to ft in

HOL where f : T→o. However, X[a7→t][a′ 7→t′] corresponds to f ′tt′

where f ′ : T→T→o. SimilarlyX[a7→t][a′ 7→t′][a′′ 7→t′′]. . .

This is type raising.

In one-and-a-halfth-order logic, X remains at sort o throughout and the

universal quantification implicit in the use of X allows arbitrary numbers

of substitutions.
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Relation to HOL

On the other hand, one-and-a-halfth-order logic is manifestly not (fully)

higher-order. For example we can write

X ` Y

meaning in FOL

“For all formulae φ and ψ, φ ` ψ.”

(A silly but perfectly well-formed judgement.)

In HOL we can write this as ` ∀φ, ψ. φ ⊃ ψ.

However we can also write ` ∀ψ.
(

(∀φ. φ) ⊃ ψ
)

.

This is not possible in one-and-a-halfth-order logic: the universal

quantification is implicit, and top-level (like ML type quantifiers).

∀[X]X ` Y is not syntax.
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Axiomatic presentation

The sequent system is equivalent to the following ‘Hilbert-style’

axiomatisation:

P ⊃ Q ⊃ P = > ¬¬P ⊃ P = >(Props)

(P ⊃ Q) ⊃ (Q ⊃ R) ⊃ (P ⊃ R) = > ⊥ ⊃ P = >

∀[a]> = > ∀[a]P ⊃ P [a7→T ] = >(Quants)

∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

a#P →∀[a](P ⊃ Q) ⇔ P ⊃ ∀[a]Q = >
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Sequent presentation for `SUB

∆

Write it just
∆̀

.

(Axiom)
t

∆̀
t

t
∆̀

u
(Cong)

C[t]
∆̀

C[u]

f(t1[a7→t
′], . . . , tn[a7→t

′])
∆̀

u
(fL)

f(t1, . . . , tn)[a7→t
′]

∆̀
u

t
∆̀

f(u1[a7→u
′], . . . , t′

n
[a7→u

′])
(fR)

t
∆̀

f(u1, . . . , un)[a 7→u
′]

[b](t[a7→t
′])

∆̀
u ∆ ` b#t

′

(absL)
([b]t)[a7→t

′]
∆̀

u

t
∆̀

[b](u[a7→u
′]) ∆ ` b#u

′

(absR)
t

∆̀
([b]u)[a7→u

′]

t
∆̀

u ∆ ` a, b#t
(varL)

(a b) · t
∆̀

u

t
∆̀

u ∆ ` a, b#u
(varR)

t
∆̀

(a b) · u
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Sequent presentation for `SUB

t
∆̀

u
(atmL)

a[a7→t]
∆̀

u

t
∆̀

u
(atmR)

t
∆̀

a[a7→u]

t
∆̀

u ∆ ` a#t
(#L)

t[a 7→t
′]

∆̀
u

t
∆̀

u ∆ ` a#u
(#R)

t
∆̀

u[a7→u
′]

(b a) · t
∆̀

u ∆ ` b#t
(renL)

t[a7→b]
∆̀

u

t
∆̀

(b a) · u ∆ ` b#u
(renR)

t
∆̀

u[a7→b]

Theorem: Cut is admissible for
∆̀

.

t
∆̀

u u
∆̀

v
(Cut)

t
∆̀

v
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Conclusions

One-and-a-halfth-order logic enriches ‘normal FOL’ with predicate

unknowns; thus enabling us to reason universally on predicates.

This is like the universal quantification implicit in a variable in a universal

algebra judgement t = u. And indeed, one-and-a-halfth-order logic

arose from an algebraisation of first-order logic.
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Conclusions

Unlike what you might expect, we do not use a hierarchy of types to

manage α-equivalence, λ-binding to handle free/bound variables, and

function application to manage substitution.

Instead, we use abstraction [a]X , freshness a#X , and an explicit

axiomatisation of substitution.

The axiomatisation of substitution is syntax-directed and susceptible to

syntax-directed proof-search (where the proof is of the equality of two

terms).
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Conclusions

We can reason about classes of predicates, using predicate variables.

We avoid the full power (and undecidability) of HOL, but seem to end up

in something which is not a subset of that system.

α-equivalence is part of the derivation tree. Gives the logic extra detail,

but also extra proof principles; i.e. we can reason about unknown

predicates also under abstractors such as ∀ or λ, without incurring

type-raising and thus function-spaces.

There is a close link to algebraisations of quantifier logics.

For further work, how about. . .

• Two-and-a-halfth-order logic (where you can abstract X)?

• Implementation and automation?

• Semantics (aside from in FOL)?
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