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Substitution in the λ-calculus

Fix a countably infinite set of variable (symbols) a, b, c, . . .. Let terms

be defined by:

t ::= a | tt | λa.t.

Henceforth let t, u be metavariables ranging over terms.

Define free variables inductively by:

fv(a) = {a} fv(tt′) = fv(t) ∪ fv(t′)

fv(λa.t) = (fv(t) \ {a})
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Substitution in the λ-calculus

Fix a choice of fresh variable for each finite set of variables.

Define substitution by:

a[a7→t] ≡ t

a[b7→t] ≡ a

(uu′)[a7→t] ≡ (u[a7→t])(u′[a7→t])

(λa.u)[a7→t] ≡ λa.u

(λb.u)[a7→t] ≡ λb.(u[a7→t]) b 6∈ fv(t)

(λb.u)[a7→t] ≡ λb′.(u[b7→b′][a7→t]) b ∈ fv(t), b′ fresh

Here ‘b′ fresh’ means ‘pick b′ fresh for the variables in the terms to the

left of ≡’.
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A simple lemma

a 6∈ fv(t) =⇒ a 6∈ fv(u[a7→t]).

Proof by induction on u: (fails)

• Suppose u ≡ a. Then a[a7→t] ≡ t.

• Suppose u ≡ b. Then b[a7→t] ≡ b.

• Suppose u ≡ u′u′′. Then
(u′u′′)[a7→t] ≡ (u′[a7→t])(u′′[a7→t]). Now a 6∈ fv(u′) so
a 6∈ fv(u′[a7→t]) by inductive hypothesis. Similarly for u′′. Result
follows.

• Suppose u ≡ λa.u′. Then (λa.u′)[a7→t] ≡ λa.u′. Result
follows.

• Suppose u ≡ λb.u′ and b 6∈ fv(t). Then
(λb.u′)[a7→t] ≡ λb.(u′[a7→t]). By inductive hypothesis
a 6∈ fv(u′[a7→t]) and result follows.
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A simple lemma

a 6∈ fv(t) =⇒ a 6∈ fv(u[a7→t]).

Proof by induction on u:

• Suppose u ≡ λb.u′ and b ∈ fv(t). Then

(λb.u′)[a7→t] ≡ λb′.(u′[b7→b′][a7→t]).

Cannot apply the inductive hypothesis since u′[b7→b′] is not a subterm

of λb.u′.

One solution: reason by induction on the size (length) of terms.
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Choice of fresh variable symbol

Na.φ(a) means. . .

• There is some finite set S such that φ(a) need not hold for a ∈ S.

• However φ(a) holds for all a 6∈ S.

This enables us to pick a fresh element, without precise reference to

what exactly it is fresh for.

For example

1. Na.(a 6= b),

2. Na.(a 6∈ {b, c, d}), and

3. ¬ Na.(a 6∈ set of variable symbols)

all hold.
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Example definition of α-equivalence

a ≈α a
s ≈α s

′ t ≈α t
′

st ≈α s
′t′

Nc. s[a7→c] ≈α t[b7→c]

λa.s ≈α λb.t
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Nonly good for predicates

This notion of ‘is fresh’ does not help us directly to choose b′ as e.g. in

the ‘b′ fresh’ in the definition of explicit substitution.

This is because explicit substitution was a function — (λb.u) maps

under [a7→t] to λb′.(u[b7→b′][a7→t]) where b′ is fresh, and this term

depends on which b′ we choose (because we did not quotient by

α-equivalence, because we wanted inductive principles!). All is not lost.
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A word on sets

Standard models of set theory are well-founded trees where the

parent-daughter relation is exactly set-membership ∈.

Set theory is more than that because we cleverly choose axioms to

define such a model.

This is a separate issue from what to do if somebody you trust gives you

a set.

It’s a well-founded tree.
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FM model of fresh

Fix some collection A of atoms a, b, c. Let an FM set universe be

well-founded trees with leaves labelled by atoms or ∅.

• This is the tree which is a node labelled by a: ‘a’.

• This is the tree with a node labelled by ∅: ‘∅’.

• This is a tree with two daughters: ‘{∅, a}’.

Let x, y vary over FM sets.

Define the FM set permutation action on sets by:

(b a) · a = b (b a) · b = a (b a) · c = c

(b a) · x = {(b a) · y | y ∈ x}

I.e. ‘swap b and a in x’.

Note that (b a) · (x \ y) = (b a) · x \ (b a) · y.
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FM model of fresh

Write

a#x when Nb.(b a) · x = x.

1. a#b is true. (c a) · b = b for c 6∈ S = {b}.

2. a#a is false. For no finite S is it the case that for b 6∈ S,

(b a) · a = a.

3. a#A is true. (c a) · A = A always.

4. a#A \ {a} is false. (b a) · (A \ {a}) = A \ {b}.

5. a#A \ {b, c} is true. Take S = {b, c}.
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FM model of abstraction

Write

[a]x = {(b, (b a) · x) | b#x ∨ b = a}.

This is the graph of a partial function which we can write as

[a]x = λb.

{

(b a) · x b#x ∨ b = a

⊥ otherwise.

The ‘traditional’ model of abstraction is ‘a function-set’. A function-set is

a set satisfying a predicate which expresses ‘this set is a set of pairs

such that the first projections of two different pairs, are different’.
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FM model of abstraction

[a]x is another model of abstraction which models α-equivalence.

The proof is in some facts:
Nc.(c a) · x = (c b) · y if and only if [a]x = [b]y.

E.g. this gives us a rule:
Nc.(c a) · x = (c b) · y

[a]x = [b]y

Also, a#[a]x and a#[b]x if and only if a#x.
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Substitution in the λ-calculus (FM)

Fix atoms. Let terms be defined by:

t ::= a | tt | λ[a]t.

Henceforth let t, u be a metavariable ranging over terms (terms are now

abstract syntax trees in FM sets).

Define free variables ‘magically’ by:

fv(t) = {a | ¬(a#t)}.
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Substitution in the λ-calculus (FM)

Don’t fix a choice of fresh variable for each finite set of variables.

Let substitution take an abstraction of a term and a term sub([a]u, t).

Sugar this to

u[a7→t].

Define it by:

a[a7→t] ≡ t

a[b7→t] ≡ a

(uu′)[a7→t] ≡ (u[a7→t])(u′[a7→t])

(λ[b]u)[a7→t] ≡ λ[b](u[a7→t]) b#t

Last clause can also be written as:

∀a, t, û. Nb. (λû)[a7→t] ≡ λ[b]((ûb)[a7→t]).
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Inductive principle

Suppose that:

• φ(a).

• If φ(t) and φ(t′) then φ(tt′).

• Na.∀u. φ(u) ⇒ φ(λ[a]u).

Then ∀t. φ(t).

We need only check φ(u) ⇒ φ(λ[a]u) for fresh a and all u, since any

abstraction û may be written as [a]u for fresh a (and some u).

One question remains. Must we check

∀u. φ(u) ⇒ φ(λ[a]u)

for cofinitely many a? Seems a bit boring really, all those

indistinguishable fresh choices for a . . .
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The principle of FM equivariance

For any predicate φ

φ(x1, . . . , xn) ⇔ φ((b a) · x1, . . . , (b a) · xn).

Proof:

1. x ∈ y if and only if (b a) · x ∈ (b a) · y.

2. x = y if and only if (b a) · x = (b a) · y.

3. (b a) · A = A.

Now given

φ(t)

we conclude

φ((b a) · t).
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The principle of FM equivariance

For example in inductive reasoning we may write

The property ‘t has the inductive hypothesis’ has one free

variable, t.

So from our assumption that t has the inductive hypothesis, we

also know that (b a) · t has the inductive hypothesis where b is

chosen fresh.

We have formal license to rename variable names in inductive

hypotheses.

We do not need to switch to induction on a coarser measure invariant

under renaming, such as length.

Also, a#z ∧ ψ(a, z) if and only if Na.ψ(a, z), so verifying ψ for one

fresh atom is the same as verifying it for all fresh atoms.
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A simple lemma

∀a, t. a#t =⇒ a#(u[a7→t]).

Immediate from general FM nonsense since a#[a]u and a#t so

a#sub([a]u, t).
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A simple lemma

Proof by induction on u:

• Suppose u ≡ a. Then a[a7→t] ≡ t.

• Suppose u ≡ b. Then b[a7→t] ≡ b.

• Suppose u ≡ u′u′′. Then

(u′u′′)[a7→t] ≡ (u′[a7→t])(u′′[a7→t]). Now a#u′ so

a#(u′[a7→t]) by inductive hypothesis. Similarly for u′′. Result

follows.
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A simple lemma

Proof by induction on u:

Suppose u ≡ λ[a′]u′ and suppose the inductive hypothesis of u′:

∀a, t. a#t =⇒ a#(u′[a7→t]).

So suppose a#t. We want to show

a#(λ[a′]u′)[a7→t].

We would like to say ‘well,

(λ[a′]u′)[a7→t] ≡ λ[a′](u′[a7→t])

so we use the inductive hypothesis’.

But we can’t, because we do not know a′#t.
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A simple lemma

Choose a′′ fresh (so a′′#a′, a, u, u′, t). Then u ≡ λ[a′′](a′′ a′) · u′

and we have the inductive hypothesis of u′′ ≡ (a′′ a′) · u′:

∀a, t. a#t =⇒ a#u′′[a7→t].

Then (λ[a′′]u′′)[a7→t] ≡ λ[a′′](u′′[a7→t]).

By inductive hypothesis a#(u′′[a7→t]) and result follows.
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Application to transition systems

π-calculus syntax may be specified as

P ::= 0 | ab.P | a[b]P | ν[a]P | (P |P ) | τ.P.

Of course, we can reason on this inductively! However, we can do more.

Let an action be:

α ::= τ | ab | ab.

Let a (half-)transition be:

tr ::= [a](α,P ′)

Write P
[a]α
→ P ′ for a pair (P, tr). Call this a transition.
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Application to transition systems

Thus we represent name-generation by an FM abstraction, and

coalgebraically → may be represented as a function

Π =⇒ P[A](Act× Π)

In fact by magic this is equivalently

Π =⇒ [A]P(Act× Π).
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Definition of bisimulation ∼

The normal definition of bisimulation is the greatest symmetric relation

such that:

P∼Q ⇒ ∀α,P ′. P
α
→ P ′ ⇒ ∃Q′. Q

α
→ Q′ ∧ P ′∼Q′

Problem with traditional type for transitions; the so-called ‘bound output’

ν[b]ab.P
a(b)
→ P

is not compatible with the definition above, since this transition is not

simulated by

(ν[b]abP.) | ν[a]ab

because it has ‘junk’ which mentions b. However our semantic intuitions

suggest the two terms should be equivalent, please.
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NEW definition of bisimulation ∼

P∼Q ⇒ Nb.∀α,P ′. P
[b]α
→ P ′ ⇒ ∃Q′. Q

[b]α
→ Q′ ∧ P ′∼Q′

Model bound output by outputting a bound name.

ν[b]ab.P
[b]ab

→ P

is compatible with

(ν[b]ab.P ) | ν[a]ab
[b′]ab

′

→ ab′.(b′ b) · P | ν[a]ab

because

(ν[b]ab.P, [b]
(

ab, P
)

) = (ν[b]ab.P, [b′]
(

ab′, (b′ b) · P
)

).

Furthermore, we know as much about (b′ b) · P as we do about P , by

FM equivariance.
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Conclusions

So, model name-generation by an FM abstraction, and unpack that

abstraction with a N. This is compatible with the coalgebraic method.

For more details, see “The π-calculus in Fraenkel-Mostowski”.

We also exhibit name-generation (a dynamic phenomenon) with

name-abstraction in syntax. The only difference is that the abstraction

lives on a type which we interpret as a transition and treat coinductively

in the first case, and lives on a type which we interpret as syntax and

treat inductively, in the second case.
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