
A NEW calculus of contexts

Murdoch J. Gabbay

19/1/2006, Torino, Italia

Grazie a Luca Paolini e Simona Ronchi della Rocca

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 1

The issue

I’d like to talk about the λ-calculus.

Com’è originale questo raggazzo.

No, but wait! I have something NEW to say.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 2

The issue

Consider the term λx.t.

x is a variable symbol and t is a meta-level variable, ranging over

λ-terms.

Instantiation of t does not avoid capture: if we set t to be x, we get

λx.x.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 3

The issue

Claim: This is the essence of the meta-level.

Substitution of ‘strong’ (meta-level) variables for ‘weak’ (object-level)

variables does not avoid capture.

Substitution of variables of the same level does avoid capture.

Let’s base a calculus on this idea.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 4

The issue

Suppose x is weak (level 1, say) and X is stronger (level 2, say), then

(λX.λx.X)x (λx.X)[X 7→x]

 λx.(X[X 7→x]) λx.x.

This is important.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 5

Yes, important!

Why formalise the meta-level?

It’s what we use to make programs, do logic, etcetera; whether we do

this formally or not, it’s there.

A formal framework which accurately represents our intention when we

write ‘λx.t’, including how t is instantiated, would be valuable.

We could do this as a logic, or as a λ-calculus. Today, we do the

λ-calculus.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 6

Slight difficulty: α-equivalence

If λx.X = λy.X then (λX.λx.X)x λy.x.

This is bad.

Some capture-avoidance remains legitimate, so we can reduce terms

like (λy.λx.y)x.

Technically, I shall use ideas originating from work with Urban and Pitts

(just after my thesis), later developed further with Fernández, and

investigated subsequently to this paper with Mathijssen, to control this

slight difficulty.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 7

The syntax

Suppose sets of variables ai, bi, ci, ni, . . . for i ≥ 1.

ai has level i. Syntax is given by:

s, t ::= ai | tt | λai.t | t[ai 7→t] | Nai.t.

• s[ai 7→t] is explicit substitution.

• λai.t is abstraction.

• Nai.t a binder.

Equate up to N-binding, nothing else.

Call bj stronger than ai when j > i.

E.g. b3 is stronger than a1.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 8

Example terms and reductions

x, y, z have level 1. X,Y,Z have level 2.

(λx.x)y x[x7→y] y Ordinary reduction

(λx.X)[X 7→x] λx.(X [X 7→x]) λx.x Context substitution

x[X 7→t] x X stronger than x

x[x′ 7→t] x Ordinary substitution

x[x7→t] t Ordinary substitution

X[x7→t] 6 Suspended substitution

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 9

Records

Fix constants 1 and 2.

l and m have level 1, X has level 2.

A record:

X[l 7→1][m 7→2]

A record lookup:

X[l 7→1][m7→2][X 7→m] X[l 7→1][X 7→m][m7→2]

 X[X 7→m][l 7→1][m7→2]

 m[l 7→1][m7→2]

 m[m7→2]

 2.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 10

In-place update

X[l 7→1][m7→2][X 7→X[l 7→2]] X[l 7→1][X 7→X[l 7→2]][m7→2]

 X[X 7→X[l 7→2]][l 7→1][m7→2]

 X[l 7→2][l 7→1][m7→2]

 X[l 7→2][m7→2]

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 11

Substitution-as-a-term

(λX.X[l 7→λn.n]) applied to lm

(λX.X[l 7→λn.n])lm X[l 7→λn.n][X 7→lm] ∗ (λn.n)m

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 12

In-place update as a term

λW.W[X 7→X[l 7→2]] applied toX[l 7→1][m7→2]

. . . and so on (W has level 3).

Likewise global state (world = a big hole), and Abadi-Cardelli imp-ε

object calculus.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 13

Records (again, using λ)

Fix constants 1 and 2.

l and m have level 1. X has level 2.

A record:

λX.X[l 7→1][m7→2].

Now we use application to retrieve the value stored at m:

(λX.X[l 7→1][m7→2])m X[l 7→1][m7→2][X 7→m]

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 14

Records (again, using λ)

λX.X[l 7→W][m7→2]

Here W has level 3. It beats X , l, and m.

Apply [W7→X]:
(

λX.X[l 7→W][m7→2]
)

[W7→X] ∗ λX.X[l 7→X][m7→2].

Apply to (lm) and obtain (l2)2:
(

λX.X[l 7→X][m7→2]
)

(lm) ∗ lm[l 7→lm][m7→2] ∗ (l2)2

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 15

Records (again, using λ)

(

λW.λX.X[l 7→W][m7→2]
)

X(lm) ∗ (l2)2

Is that wrong?

Depends what you want.

This kind of thing makes the Abadi-Cardelli ‘self’ variable work. The

issue is that λ does not bind — it abstracts.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 16

N

NX.
(

λX.X[l 7→W][m7→2]
)

.

Then

(

NX.λX.X[l 7→W][m7→2]
)

[W7→X]

∗ NX ′.(λX ′.X ′[l 7→W][m7→2][W7→X])

∗ NX ′.λX ′.X ′[l 7→X][m7→2]

Apply to lm:

NX ′.(λX ′.X ′[l 7→X][m7→2]) (lm)

 NX ′.((λX ′.X ′[l 7→X][m7→2]) (lm))

 NX ′.X ′[l 7→X][m7→2][X ′ 7→lm] ∗ (X[m7→2])2

Nbehaves like the π-calculus ν; it floats to the top (extrudes scope).

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 17

Summary

1. λ abstracts — it stays put and β-reduces.

2. [x7→s] substitutes — it floats downwards capturing x until it runs

out of term or gets stuck on a stronger variable.

3. Nbinds — it floats upwards avoiding capture.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 18

Reduction rules

(β) (λai.s)u s[ai 7→u]

(σa) ai[ai 7→u] u ∀c. c#ai⇒c#u

(σ#) s[ai 7→u] s ai#s

(σp) (ait1 . . . tn)[bj 7→u] (ai[bj 7→u]) . . . (tn[bj 7→u])

(σσ) s[ai 7→u][bj 7→v] s[bj 7→v][ai 7→u[bj 7→v]] j>i

(σλ) (λai.s)[ck 7→u] λai.(s[ck 7→u]) ai#u, ck k≤i

(σλ′) (λai.s)[bj 7→u] λai.(s[bj 7→u]) j > i

(σtr) s[ai 7→ai] s

(Np) (Nnj .s)t Nnj .(st) nj 6∈t

(Nλ) λai. Nnj .s Nnj .λai.s nj 6=ai

(Nσ) (Nnj .s)[ai 7→u] Nnj .(s[ai 7→u]) nj 6∈u nj 6=ai

(N6∈) Nnj .s s nj 6∈s

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 19

Graphs (if I have time)

Here is a fun NEW calculus of contexts program:

s = λX.((X[x7→y])(X[y 7→x])).

Observe s(xy) ∗ (yy)(xx).

Free variables behave like dangling edges in graphs; stronger variables

behave like holes.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 20

Partial evaluation (if I have time)

Write

if = λa, b, c.abc true = λab.a false = λab.b

not = λa.if a false true.

in untyped λ-calculus. Then calculate

s = λf, a.if a (f a) a specialised to s not

by β-reduction. We obtain λa.if a (not a) a.

A more intelligent method may recognise that the program will always

return false (with types etc.).

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 21

Partial evaluation (if I have time)

Choose level 1 variables a, b and level 2 variables and B,C and define

true = λab.a false = λab.b

if = λa,B,C. a(B[a7→true])(C[a7→false])

not = λa.if a false true.

So if we get to B, a = true. Consider

s = λf, a.if a (f a) a specialised to s not.

We obtain:

s not
∗ λa.a ((notB)[a 7→true][B 7→a]) (C[a7→false][C 7→a])

∗ λa.a ((nota)[a7→true]) (a[a7→false])

∗ λa.(a false false).

More efficient!

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 22

Other applications

Dynamic (re)binding.

Staged computation. Our calculus is a pure rewrite system. However, a

programming language based on it can model staged computation (I

think).

Complexity. Can we write more efficient programs?

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 23

Meta-properties

• Confluence.

• Preservation of strong normalisation (for untyped lambda-calculus).

• Hindley-Milner type system. Explicit substitution rule is like that for

let.

• Applicative characterisation of contextual equivalence.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 24

Conclusions

The meta-level lives in the same world as the object calculus. So does

the meta-meta-level. And so on.

Scope separate from abstraction; necessary for proper control of

α-equivalence in the presence of the hierarchy.

Hierarchy of strengths of variables in common with work by Sato et al.

But we have different control of α-equivalence.

Explicit substitution calculus.

Model of state, unordered datatypes, and objects. Most probably more.

A NEW calculus of contexts, 19/1/2006, Turin, Italy. 25

