Nominal rewriting

Murdoch J. Gabbay

23/1/2006, Innsbruck, Austria

Thanks for inviting me (at short notice).

l'll talk about nominal rewriting. . .

... and the broader framework of my research, if I have time.

Consider the term λx.t.
x is a variable symbol and t is a meta-level variable, ranging over λ-terms.

Instantiation of t does not avoid capture: if we set t to be x, we get $\lambda x . x$.

The issue

Consider the term $(\lambda x . t) u$.
This reduces

$$
(\lambda x . t) u \rightsquigarrow t[x \longmapsto u]
$$

Let's specify how substitution distributes through t :

$$
\begin{aligned}
x[x \mapsto t] & =t \\
y[x \mapsto t] & =y \\
\left(t t^{\prime}\right)[x \mapsto u] & =(t[x \mapsto u])\left(t^{\prime}[x \mapsto u]\right) \\
(\lambda z . t)[x \mapsto u] & =\lambda z .(t[x \mapsto u]) \quad z \notin u
\end{aligned}
$$

The issue

x, y, and z are variable symbols, or more precisely meta-level variable symbols varying over object-level variable symbols.
t and u are meta-level variable, ranging over λ-terms.
t itself is not a λ-term!
Instantiation of t does not avoid capture: if we set t to be x, we get λx.x.

The definition of substitution has side-conditions (so as a rewrite system we would need conditional reductions:

$$
(\lambda z . t)[x \mapsto u]=\lambda z .(t[x \mapsto u]) \quad z \notin u
$$

Substitution of ‘strong’ (meta-level; t) variables for 'weak’ (object-level;
$x)$ variables does not avoid capture.
Substitution of variables of the same level does avoid capture. That's what we specify when we 'specify substitution' $[x \mapsto u]$.

Nominal rewriting is a rewriting framework which faithfully represents the intuition and informal practice of writing λx.t, including the capturing behaviour of instantiation of t.

Syntax and sorts

Nominal rewriting has nominal terms.
It is abstract syntax trees, with sorts and term-formers.

$$
t, u::=a, b, c, \ldots|X, Y, Z, \ldots|[a] t|\mathrm{f}(t, \ldots, t)| \ldots
$$

a, b, c, \ldots are atoms. They represent object-level variable symbols. They have a sort of . . 'object-level variable symbols'. So object-level variable symbols are data.
X, Y, Z, \ldots are variables or unknowns. They represent unknowns and may have any sort (usually elided).
$[a] t$ is an abstraction. Think of it as $\lambda a . t$, but without β-equivalence.

Take a sort \mathbb{T} of λ-terms and a sort \mathbb{A} of atoms.

Note: we represent the terms of the λ-calculus as nominal terms of sort \mathbb{T}.

Nominal rewrite system for the λ-calculus

Take • (application) a binary term-former arity $(\mathbb{T}, \mathbb{T}) \mathbb{T}$.
Write $\cdot(t, u)$ as $t u$ and associate to the left, as usual.

Take $\lambda \quad$ (abstraction) $\operatorname{arity}([\mathbb{A}] \mathbb{T}) \mathbb{T}$.
Write $\lambda([a] t)$ as $\lambda[a] t$.

Take sub (explicit substitution) $\operatorname{arity}([\mathbb{A}] \mathbb{T}, \mathbb{T}) \mathbb{T}$.
Write $\operatorname{sub}([a] t, u)$ as $t[a \longmapsto u]$.

Nominal rewrite system for the λ-calculus

Rewrite rules are:

$$
(\lambda[a] X) Y \rightarrow X[a \mapsto Y] \quad(\cdot(\lambda[a] X, Y) \rightarrow \operatorname{sub}([a] X, Y))
$$

and. . .

Explicit substitution

$$
\begin{aligned}
a[a \mapsto X] & \rightarrow X \\
a \# Z \vdash Z[a \mapsto X] & \rightarrow \\
\mathrm{f}\left(X_{1}, \ldots, X_{n}\right)[a \mapsto X] & \rightarrow \mathrm{f}\left(X_{1}[a \mapsto X], \ldots, X_{n}[a \mapsto X]\right) \\
b \# X \vdash([b] Y)[a \mapsto X] & \rightarrow
\end{aligned}
$$

For example:

$$
(\lambda[a] a) b \rightarrow a[a \longmapsto b] \rightarrow b
$$

$$
(\lambda[a] a a b) b \rightarrow(a a b)[a \mapsto b] \rightarrow(a a)[a \mapsto b](b[a \mapsto b]) \rightarrow^{*} b b b
$$

$$
\begin{array}{r}
(\lambda[a] \lambda[b] a) b \rightarrow(\lambda[b] a)[a \mapsto b] \rightarrow \lambda\left(\left(\left[b^{\prime}\right] a\right)[a \mapsto b]\right) \stackrel{b^{\prime} \# b}{\longrightarrow} \\
\lambda\left[b^{\prime}\right](a[a \mapsto b]) \rightarrow \lambda\left[b^{\prime}\right] b
\end{array}
$$

$$
\begin{gathered}
(\lambda[a] \lambda[b] Z) X \rightarrow(\lambda[b] Z)[a \mapsto X] \rightarrow \lambda\left(\left(\left[b^{\prime}\right]\left(b^{\prime} b\right) \cdot Z\right)[a \mapsto X]\right) \stackrel{b^{\prime} \# X, Z}{\longrightarrow} \\
\lambda\left[b^{\prime}\right]\left(\left(b^{\prime} b\right) \cdot Z[a \mapsto X]\right)
\end{gathered}
$$

If we also know $a \# Z$ we can further reduce

$$
\lambda\left[b^{\prime}\right]\left(\left(b^{\prime} b\right) \cdot Z[a \mapsto X]\right) \rightarrow \lambda\left[b^{\prime}\right]\left(b^{\prime} b\right) \cdot Z
$$

α-equality and freshness

What is $a \# t$?

$$
\frac{a \# t_{1} \cdots a \# t_{n}}{a \# \mathrm{f}\left(s_{1}, \ldots, t_{n}\right)} \quad \frac{a \# t}{a \#[b] t} \quad \overline{a \# b} \quad \overline{a \#[a] t} \quad \frac{\pi^{-1}(a) \# X}{a \# \pi \cdot X}
$$

$a \#[a] t$ always holds.
$a \# X$ only holds if you've assumed $\ldots a \# X$.
$b \# a$ always holds.
$a \# a$ never holds.
$a \# \pi \cdot X$ holds if and only if $\pi^{-1}(a) \# X$ holds.

α-equality and freshness

What is $(a b) \cdot X$?
Well, note that it is not possible for $[a] X \approx_{\alpha}[b] X$.
Then (since rewrites and thus equality should be closed under instantiating unknowns) $[a] a \approx_{\alpha}[b] a$, which is like $\lambda a . a=\lambda b . a$ (but without the functions, i.e. β-equivalence!).

But we still want to rename atoms, to avoid capture, etc.
So we write $[a] X \approx_{\alpha}[b](b a) \cdot X$.
Nominal rewriting is such that rewrites are equivalent up to the least symmetric transitive reflexive congruence \approx_{α} such that

$$
a, b \# t \vdash(a b) \cdot t \approx_{\alpha} t
$$

\approx_{α} is decidable, in linear time:

$$
\begin{gathered}
\frac{s_{1} \approx_{\alpha} t_{1} \cdots s_{n} \approx_{\alpha} t_{n}}{\mathrm{f}\left(s_{1}, \ldots, s_{n}\right) \approx_{\alpha} \mathrm{f}\left(t_{1}, \ldots, t_{n}\right)} \quad \frac{t \approx_{\alpha} t^{\prime}}{a \approx_{\alpha} a} \frac{t^{\prime} \approx_{\alpha} t}{[a] s \approx_{\alpha}[b] t} \quad \frac{s \approx_{\alpha} t}{[a] s \approx_{\alpha}[a] t} \quad \frac{a \# t \quad \approx_{\alpha}(a b) \cdot t}{\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X}
\end{gathered}
$$

(Here $d s\left(\pi, \pi^{\prime}\right) \stackrel{\text { def }}{=}\left\{n \mid \pi(n) \neq \pi^{\prime}(n)\right\}$. For example, $d s((a b), \mathbf{I d})=\{a, b\}$.

Example derivation

$\frac{\frac{a \approx_{\alpha} a b \approx_{\alpha} b}{a b \approx_{\alpha} a b}}{\frac{a \# \lambda[a] b a}{\lambda[b] a b \approx_{\alpha}(b a) \cdot(\lambda[a] b a) \equiv \lambda[b] a b}} \underset{\lambda[a] \lambda[b] a b \approx_{\alpha} \lambda[b] \lambda[a] b a}{ }$

Looks like $\lambda f . \lambda x . f x=\lambda x . \lambda f . x f$.

Example derivation

$$
\begin{aligned}
& \frac{\frac{}{a \# \lambda[a](b a) \cdot X} \quad \frac{X \approx_{\alpha}(b a) \circ(b a) \cdot X}{}(\# X)}{\lambda[b] X \approx_{\alpha}(b a) \cdot(\lambda[a](b a) \cdot X) \equiv \lambda[b](b a) \circ(b a) \cdot X} \\
& \lambda[a] \lambda[b] X \approx_{\alpha} \lambda[b] \lambda[a](b a) \cdot X
\end{aligned}
$$

Looks like?
Note permutation treats open terms (terms with unknowns). Parametric treatment of abstraction.

Global context

Nominal rewriting [PPDP'04] is like first-order rewriting:
If nontrivial critical pairs are joinable: local confluence.
Orthogonal rewrite system: confluence.
Interesting extensions [PPDP'05] as rewrite system.

Equality

Instead of considering \longrightarrow, a directed equality...
... we can throw out the direction and consider nominal algebra (Nominal Algebraic Specifications).

$$
\begin{array}{rlrl}
(\# \mapsto) & a \# X & \vdash X[a \mapsto T] & \\
(f \mapsto) & & \vdash \mathrm{f}\left(X_{1}, \ldots, X_{n}\right)[a \mapsto T] & =\mathrm{f}\left(X_{1}[a \mapsto T], \ldots, X_{n}[a \mapsto T]\right) \\
(a b s \mapsto) & b \# T & \vdash([b] X)[a \mapsto T] & \\
(\text { var } \mapsto) & & \vdash \operatorname{var}(a)[a \mapsto T] & \\
(\text { ren }) & b \# X & \vdash T & \vdash X[a \mapsto T]) \\
(a \mapsto \operatorname{var}(b)] & & =(b a) \cdot X
\end{array}
$$

(var has sort (\mathbb{A}) \mathbb{T}.)
These axioms are ω-complete - if $t \sigma=u \sigma$ for all closing σ then $t=u$.

This is not at all an easy result.
(Props) $\quad P \Rightarrow Q \Rightarrow P=\top \quad \neg \neg P \Rightarrow P=\top$

$$
(P \Rightarrow Q) \Rightarrow(Q \Rightarrow R) \Rightarrow(P \Rightarrow R)=\top \quad \perp \Rightarrow P=\top
$$

(Quants)
$\forall[a] P \Rightarrow P[a \mapsto T]=\top \quad \forall[a](P \wedge Q) \Leftrightarrow \forall[a] P \wedge \forall[a] Q=\top$

$$
a \# P \vdash \forall[a](P \Rightarrow Q) \Leftrightarrow P \Rightarrow \forall[a] Q=\top
$$

(Eq) $\quad T \approx T=\top \quad T \approx U \Rightarrow P[a \mapsto T] \Leftrightarrow P[a \mapsto U]=\top$

Atoms are data. That is, $a \neq b$ is derivable.
So in a semantics, e.g. for substitution or logic, variable symbols are first-class elements of the denotation.

What does that denotation look like?

Further work

In a sense the only difference between X and a is that $([a] X)[X \mapsto t] \equiv[a] t$, i.e. substitution of t for X does not avoid capture.
$([a] X)[b \mapsto t]$ does avoid capture.
What if we allow abstraction by $[X]$ in the syntax, and introduce a hierarchy of levels of variables $a_{1}(a), a_{2}(X), a_{3}(t ?)$, and so on, what do we get [PPDP'05b].

Further work

Graphs with abstraction for name-generation (work with Joe Wells)?
Logics and lambda-calculi with hierarchies of variables (instead of simple types)?

Feasibility study of mechanised formal proof system (like Isabelle) but with iconoclastic treatment of functions?
... and much more, of course.

