
Nominal techniques and the meta-level

Murdoch J. Gabbay

24/1/2006, Venzia, Italia

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 1

Thanks for having me in this wonderful city.

Thanks for all the coffee.

This will be a general talk about what it is I do (because you so kindly

keep asking).

It will not be technical: but see my webpage www.gabbay.org.uk

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 2

Abstraction

Computer science is always about representation.

Do you disagree?

We do not lack data nowadays, but information is always precious.

Mathematics has historically been very successful at representing

information (based on data).

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 3

Abstraction

A historical example: Astronomical observations, to Kepler’s laws, to

Newton’s laws.

A biological example: The eye receives much information, which is

abstracted by the retina to a collection of lines and passed down the

optic nerve (then unpacked and re-abstracted as objects; when this

goes wrong, see ‘the man who mistook his wife for a hat’, or forms of

autism).

A contemporary example: Data mining converts data into information.

Also, how is that data represented? Prolog? First-order logic? Raw

numbers?

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 4

Representing information

Theoretical computer science wants to represent information.

Many motivations for this (rigour, efficiency, automation).

An antique example: The zero and positional notation. Algebra. Maple

is ‘just an application’ of an explicit representation of

cardinality-with-unknowns, as in 2.x = y.

A semi-historical example: Databases are ‘just an application’ of

fragments of first-order logic.

A contemporary example: XML is ‘just’ trees.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 5

Representing information

Theoretical computer science wants to represent information.

If you disagree, are you sure you’re not a mathematician?

I don’t mind if you are. I’m a mathematician myself — though I apply my

mathematics to theoretical computer science.

So what is the mathematics of representing information?

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 6

λ-calculus and logic

The classic! The only!

They have in common: abstraction.

λx.t, ∀x.P , or even just t(x) and P (x).

This makes sense; they represent information.

Information abstracts from data and represents, in one way or another, a

parametrisation over many individual cases.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 7

The meta-level/object-level split

One of the most significant discoveries of the 20th century was the

meta-level. This arose from paradoxes related to naı̈ve formalisations,

but also from physics (quantum mechanics).

Russell’s celebrated paradox only the most well-known of many.

Illative combinatory logic, stratification, types, ZF, NF,. . .

All restrict language to allow to represent ‘data’ and ‘information’, while

avoiding paradoxes.

The λ-calculus has simple types. (Function at higher type)=information

vs (element of lower type)=data.

Logic has predicates vs. terms. Predicate=information, term=data.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 8

The meta-level/object-level split: philosophy thereof

It’s perhaps enlightening to consider what happens when the

meta-level/object-level split is misapplied.

Just once case: Psychology.

The ‘subject’ of a psychological experiment makes theories about the

‘scientist’ running the experiment.

Child psychology is particularly prone to this, since adults like to think

they’re smarter than kids.

A different approach is necessary.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 9

The meta-level/object-level split

The meta-level we choose, or choose to pretend exists, has a profound

influence on our formalisms, and thus (via computers) on our tools. Just

like other basic cultural assumptions.

Indeed, this split is far greater than solely mathematics.

But the formalism of mathematics (and economic importance of

computers) threw a particularly harsh light on some aspects of the issue.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 10

The issue

Consider the term λx.t.

x is a variable symbol and t is a meta-level variable, ranging over

λ-terms.

Instantiation of t does not avoid capture: if we set t to be zx, we get

λx.zx.

Consider the predicate ∀x.P .

x is a variable symbol and P is a meta-level variable, ranging over

predicates.

Instantiation of P does not avoid capture: if we set P to be x = z, we

get ∀x.x = z.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 11

The issue

Can we model this within the object-level, which is pre-equipped with

notions of abstraction (λ and ∀)?

Consider the term (λt.λx.t)(zx).

This reduces

(λt.λx.t)(zx) λx′.zx

Oops!

This is not wrong — it just does not accurately reflect the instantiation

behaviour of meta-level variable symbols.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 12

The issue

The problem is that the model of abstraction based on λ (and its friends,

e.g. ∀) assumes that any interaction with the environment is explicitly

represented in a fully-specified interface.

This issue turns up also in software engineering, for example.

Compare enterprise systems architecture, where it is important to

assume that interactions between blocks can only occur along specified

channels (but components are relatively macroscopic. . .

. . . with other kinds of systems architecture, where it may be important to

have complex interconnections ‘across interfaces’, since otherwise the

explicit representation of every connection as it traverses components

(from A to Z via C,D,. . .) inflates state-space and specification.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 13

The issue

This issue turns up in ‘exceptions’ in programming, which violate normal

control flow. cf. use of monads in Haskell to explicitly represent this in

control flow in a pure functional language.

The issue appears in so-called ‘incomplete proofs’ and ‘existential

variables’ (my claim) where variables are introduced to represent

complex objects whose instantiation may involve capture of object-level

variable symbols present in the context.

The issue appears in parallelism and concurrency, where it may be

desirable to substitute a program fragment with bindings (dynamic

linking) or reason about scope and movement of names. Existing

concrete models of this include graphs, subject to a notion of

substitution in which links may be made with the context.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 14

The issue

Still, back to the original motivation. What is the mathematics of

instantiating t in

λx.t?

Note that t itself is not a λ-term! t is a meta-level variable ranging over

λ-terms.

Indeed, x is not an object-level variable symbol. x is a meta-level

variable symbol ranging over λ-term variables. (In an implementation,

there would be an ‘identifier space’ or ‘name space’ to which x is linked

at runtime.)

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 15

The issue

Substitution of ‘strong’ (meta-level; t) variables for ‘weak’ (object-level;

x) variables does not avoid capture.

Substitution of variables of the same level does avoid capture. That’s

capture-avoiding substitution t[x7→u].

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 16

Nominal terms [Urban Pitts Gabbay 03]

Nominal terms are a framework which faithfully represents the intuition

and informal practice of writing λx.t (and co.) including the capturing

behaviour of instantiation of t.

They are abstract syntax, with sorts and term-formers.

t, u ::= a, b, c, . . . | X,Y,Z, . . . | [a]t | f(t, . . . , t) | . . .

a, b, c, . . . are atoms. They represent object-level variable symbols.

They have a sort of . . . ‘object-level variable symbols’. So object-level

variable symbols are data.

X,Y,Z, . . . are variables or unknowns. They represent unknowns

and may have any sort (usually elided).

[a]t is an abstraction. Think of it as λa.t, but without β-equivalence.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 17

Nominal terms [Urban Pitts Gabbay 03]

Nominal terms arose from the Fraenkel-Mostowski set semantics of

abstraction, which for the first time allowed a semantics specification of

abstraction independently of a commitment to functional abstraction, or

any other concrete model (graphs, syntax, de Bruijn, α-equivalence,

etcetera).

But once you have a term-language you can do all kinds of things with it;

operational semantics, logic and proof-theory, λ-calculi, and

denotational semantics.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 18

Nominal rewrite system for the λ-calculus

Take · (application) a binary term-former arity (T, T)T.

Write ·(t, u) as tu and associate to the left, as usual.

Take λ (abstraction) arity ([A]T)T.

Write λ([a]t) as λ[a]t.

Take sub (explicit substitution) arity ([A]T, T)T.

Write sub([a]t, u) as t[a7→u].

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 19

Nominal rewrite system for the λ-calculus

Rewrite rules are:

(λ[a]X)Y → X[a7→Y]
(

·(λ[a]X,Y) → sub([a]X,Y)
)

and. . .

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 20

Explicit substitution

a[a7→X] → X

a#Z ` Z[a7→X] → Z

f(X1, . . . ,Xn)[a7→X] → f(X1[a7→X], . . . ,Xn[a7→X])

b#X ` ([b]Y)[a7→X] → [b](Y [a7→X])

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 21

For example:

(λ[a]a)b → a[a7→b] → b

(λ[a]aab)b → (aab)[a7→b] → (aa)[a7→b](b[a7→b]) → ∗ bbb

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 22

For example:

(λ[a]λ[b]a)b → (λ[b]a)[a7→b] → λ(([b′]a)[a7→b])
b′#b
→

λ[b′](a[a7→b]) → λ[b′]b

(λ[a]λ[b]Z)X → (λ[b]Z)[a7→X] → λ(([b′](b′ b) · Z)[a7→X])
b′#X,Z
→

λ[b′]((b′ b) · Z[a7→X]).

If we also know a#Z we can further reduce

λ[b′]((b′ b) · Z[a7→X]) → λ[b′](b′ b) · Z.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 23

α-equality and freshness

What is a#t?

a#t1 · · · a#tn

a#f(s1, . . . , tn)

a#t

a#[b]t a#b a#[a]t

π-1(a)#X

a#π · X

a#[a]t always holds.

a#X only holds if you’ve assumed . . .a#X .

b#a always holds.

a#a never holds.

a#π · X holds if and only if π-1(a)#X holds.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 24

α-equality and freshness

What is (a b) · X?

Well, note that it is not possible for [a]X ≈α [b]X .

Then (since rewrites and thus equality should be closed under

instantiating unknowns) [a]a ≈α [b]a, which is like λa.a = λb.a (but

without the functions, i.e. β-equivalence!).

But we still want to rename atoms, to avoid capture, etc.

So we write [a]X ≈α [b](b a) · X .

Nominal rewriting is such that rewrites are equivalent up to the least

symmetric transitive reflexive congruence ≈α such that

a, b#t ` (a b) · t ≈α t.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 25

Example derivation

a#λ[a]ba

a ≈α a b ≈α b

ab ≈α ab

λ[b]ab ≈α (b a) · (λ[a]ba) ≡ λ[b]ab

λ[a]λ[b]ab ≈α λ[b]λ[a]ba

Looks like λf.λx.fx = λx.λf.xf .

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 26

Example derivation

a#λ[a](b a) · X

(#X)
X ≈α (b a) ◦ (b a) · X

λ[b]X ≈α (b a) · (λ[a](b a) · X) ≡ λ[b](b a) ◦ (b a) · X

λ[a]λ[b]X ≈α λ[b]λ[a](b a) · X

Looks like?

Note permutation treats open terms (terms with unknowns). Parametric

treatment of abstraction.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 27

Equality

We can throw out the directionality of rewriting and consider nominal

algebra (Nominal Algebraic Specifications).

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 28

Substitution (again)

(#7→) a#X ` X[a7→T] = X

(f 7→) ` f(X1, . . . ,Xn)[a7→T] = f(X1[a7→T], . . . ,Xn[a7→T]) (f 6= var)

(abs 7→) b#T ` ([b]X)[a7→T] = [b](X[a7→T])

(var 7→) ` var(a)[a7→T] = T

(ren7→) b#X ` X[a7→var(b)] = (b a) · X

(var has sort (A)T.)

These axioms are ω-complete — if tσ = uσ for all closing σ then

t = u.

This is not at all an easy result.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 29

Logic (first-order)

P ⇒ Q ⇒ P = > ¬¬P ⇒ P = >(Props)

(P ⇒ Q) ⇒ (Q ⇒ R) ⇒ (P ⇒ R) = > ⊥ ⇒ P = >

∀[a]P ⇒ P [a7→T] = > ∀[a](P ∧ Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

(Quants)

a#P ` ∀[a](P ⇒ Q) ⇔ P ⇒ ∀[a]Q = >

T ≈ T = > T ≈ U ⇒ P [a7→T] ⇔ P [a7→U] = >(Eq)

One-and-a-halfth order logic.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 30

A programming language with a hierarchy of meta-levels

Suppose sets of variables ai, bi, ci, ni, . . . for i ≥ 1.

ai has level i. Syntax is given by:

s, t ::= ai | tt | λai.t | t[ai 7→t] | . . .

• s[ai 7→t] is explicit substitution.

• λai.t is abstraction.

Call bj stronger than ai when j > i.

E.g. b3 is stronger than a1.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 31

Example terms and reductions

x, y, z have level 1. X,Y,Z have level 2.

(λx.x)y x[x7→y] y Ordinary reduction

(λx.X)[X 7→x] λx.(X [X 7→x]) λx.x Context substitution

x[X 7→t] x X stronger than x

x[x′ 7→t] x Ordinary substitution

x[x7→t] t Ordinary substitution

X[x7→t] 6 Suspended substitution

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 32

Records

Fix constants 1 and 2.

l and m have level 1, X has level 2.

A record:

X[l 7→1][m 7→2]

A record lookup:

X[l 7→1][m7→2][X 7→m] X[l 7→1][X 7→m][m7→2]

 X[X 7→m][l 7→1][m7→2]

 m[l 7→1][m7→2]

 m[m7→2]

 2.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 33

In-place update

X[l 7→1][m7→2][X 7→X[l 7→2]] X[l 7→1][X 7→X[l 7→2]][m7→2]

 X[X 7→X[l 7→2]][l 7→1][m7→2]

 X[l 7→2][l 7→1][m7→2]

 X[l 7→2][m7→2]

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 34

Substitution-as-a-term

(λX.X[l 7→λn.n]) applied to lm

(λX.X[l 7→λn.n])lm X[l 7→λn.n][X 7→lm] ∗ (λn.n)m

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 35

Records (again, using λ)

Fix constants 1 and 2.

l and m have level 1. X has level 2.

A record:

λX.X[l 7→1][m7→2].

Now we use application to retrieve the value stored at m:

(λX.X[l 7→1][m7→2])m X[l 7→1][m7→2][X 7→m]

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 36

Records (again, using λ)

λX.X[l 7→W][m7→2]

Here W has level 3. It beats X , l, and m.

Apply [W7→X]:
(

λX.X[l 7→W][m7→2]
)

[W7→X] ∗ λX.X[l 7→X][m7→2].

Apply to (lm) and obtain (l2)2:
(

λX.X[l 7→X][m7→2]
)

(lm) ∗ lm[l 7→lm][m7→2] ∗ (l2)2

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 37

Conclusions

There is a whole other notion of instantiation, which captures — to be

compared with substitution, which does not (my terminology).

Instantiation is difficult to manage, because e.g. we do not want

[a]X = [b]X but we do want [a]a = [b]b.

NEW technology helps to investigate these ideas.

Nominal techniques and the meta-level, 24/1/2006, Venice, Italy. 38

