A Concrete Model of Linearity and Separation

Murdoch J. Gabbay
Heriot-Watt University, UK, 17/3/2006

Multiplicative conjunction and implication

$$
\begin{gathered}
\frac{P, Q, \Gamma \vdash \Delta}{P \otimes Q, \Gamma \vdash \Delta}(\otimes L) \quad \frac{\Gamma \vdash \Delta, P \quad \Gamma^{\prime} \vdash \Delta^{\prime}, Q}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}, P \otimes Q}(\otimes R) \\
\frac{Q, \Gamma \vdash \Delta \quad \Gamma^{\prime} \vdash \Delta^{\prime}, P}{P \multimap Q, \Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}}(\multimap L) \quad \frac{P, \Gamma \vdash \Delta, Q}{\Gamma \vdash \Delta, P \multimap Q}(\multimap R)
\end{gathered}
$$

Why is this interesting?

These connectives model the idea of:

Different things happening in different parts of the universe, without interference.

To assert $P \otimes Q$ is to assert that the universe splits into two separate parts, one satisfying P and the other satisfying Q.
To assert $P \multimap Q$ is to assert that if this universe is placed separately in parallel with a universe satisfying P, then the universe as a whole satisfies Q.
(Jamie draws a picture.)

Additive conjunction and implication

$$
\begin{aligned}
& \frac{P, Q, \Gamma \vdash \Delta}{P \wedge Q, \Gamma \vdash \Delta}(\wedge L) \quad \frac{\Gamma \vdash \Delta, P \quad \Gamma \vdash \Delta, Q}{\Gamma \vdash \Delta, P \wedge Q}(\wedge R) \\
& \frac{Q, \Gamma \vdash \Delta \Gamma \vdash \Delta, P}{P \supset Q, \Gamma \vdash \Delta}(\supset L) \quad \frac{P, \Gamma \vdash \Delta, Q}{\Gamma \vdash \Delta, P \supset Q}(\supset R)
\end{aligned}
$$

Why is this interesting?

Well, obviously we still want to say
P and Q
and
if P then Q.

Structural rules

Note that the multiplicative and additive formulations become equivalent if we admit structural rules weakening and contraction:

$$
\frac{\Gamma \vdash \Delta}{\Gamma, P \vdash \Delta}(\text { Weaken }) \quad \frac{\Gamma, P, P \vdash \Delta}{\Gamma, P \vdash \Delta}(\text { Contract })
$$

Linear logic (LL) ...

\ldots. has a bang ! P.
Banged formulae can be freely weakened and contracted. Then additive implication may be obtained by using banged propositions.

Bunched implications (BI)

... 'orthogonally' mixes the multiplicative and additive parts.

Syntax: Colourful logic

Formulae defined by grammar:

$$
\begin{aligned}
P, Q::= & P \Rightarrow P|P \otimes P| \quad \text { И[c]. } P \mid \\
& (P-c) \mid \\
& (P+c)\left|\square_{c} P\right| \perp \mid p, q, r .
\end{aligned}
$$

Identify up to binding by $И[c]$. Call p, q, r propositional constants.

Colourful sugar

- $P \otimes Q$ is BI, LL mult. conj.
- $P \supset Q=И[c] .\left(P+c \Rightarrow \square_{c} Q\right)$ (BI add. imp).
- $\neg P=P \supset \perp$.
- $P \wedge Q=\neg(P \supset \neg Q)$ (BI add. conj).
- \quad = $\perp \supset \perp$.
- $0=И[c] .(\top+c)$ (BI, LL mult. unit).
- $P \multimap Q=И[c] .(P+c \Rightarrow Q+c)-c$ (BI, LL mult. imp).
- Fix some c, write ! P for $P-c$ (LL bang).
- $!P \multimap Q$ is LL add. imp.

Interpretation

I claim these give are (natural) translations of bunched implications and linear logic into this syntax, such that the induced semantics is sound. . .

Semantics: Multicoloured multisets

Fix a countably infinite set $a, b, c \in C$ of colours.
Write $d \in \mathcal{D}$ for the set of finite sets of colours.
For a multiset U and a function $C_{U}: U \rightarrow \mathcal{D}$ say C_{U} is a colouring of U when $\bigcup_{u \in U} C_{U}(u)$ is finite.
So a colouring colours elements $u \in U$ from some 'finite palette'.

Multicoloured multisets

A multicoloured multiset or universe U is a pair $\left(|U|, C_{U}:|U| \rightarrow \mathcal{D}\right)$ of an underlying multiset $|U|$ and a colouring of $|L|$.
We may write just U for $|U|$. Write \mathcal{U} for the set of universes.

Multicoloured multisets

Each colour c partitions $|U|$ into two regions:

$$
\left\{u \in|U| \quad \mid \quad c \in C_{U}(u)\right\} \quad\left\{u \in|U| \quad \mid c \notin C_{U}(u)\right\} .
$$

Call u uncoloured when $C_{U}(u)=\emptyset$.
Call U uncoloured when all $u \in U$ are uncoloured.

Interesting operations on multicoloured multisets

$U-c=\left(|U|, \lambda u .\left(C_{u}(u) \backslash\{c\}\right)\right)$.
$U+c=\left(|U|, \lambda u .\left(C_{u}(u) \cup\{c\}\right)\right)$.
$U \uplus U^{\prime}=\left(|U| \uplus\left|U^{\prime}\right|, \lambda x .\left\{\begin{array}{ll}C_{U^{x}} & x \in|U| \\ C_{U^{\prime}} x & x \in\left|U^{\prime}\right|\end{array}\right)\right.$.
Bleach c.
Paint c.

Disjoint sum.
$|U| \uplus\left|U^{\prime}\right|$ is multiset union.

Interesting operations on multicoloured multisets

$(a b) U=\left(|U|, \lambda u .(a b) C_{U}(u)\right)$.
Swapping action.
$(a b)$ is the swapping function on colours mapping a to b and vice versa, and mapping $c \neq a, b$ to itself. Its action extends pointwise to sets of colours.
$U \subseteq U^{\prime}$ when $|U| \subseteq\left|U^{\prime}\right|$ and $C_{U^{\prime}}(u)=C_{U}(u)$ for all $u \in|U|$.
Multicoloured sub-multiset!

Cut-and-paste

Define \rightarrow as a rewrite on multisets induced by:

- $U \rightarrow U^{\prime}$ when U and U^{\prime} are uncoloured and $U^{\prime} \subseteq U$.
- $U \rightarrow U^{\prime}$ when U and U^{\prime} are uncoloured and

$$
U^{\prime}=U \uplus U .
$$

\rightarrow cuts and pastes the uncoloured parts of U.
\rightarrow is not symmetric. Any uncoloured nonempty $U \rightarrow \emptyset$ but $\emptyset \nrightarrow U$.

Predicates

Extend the swapping action to sets of universes, pointwise. Thus

$$
(a b) \mathcal{P}=\{(a b) U \quad \mid \quad U \in \mathcal{P}\} .
$$

$\Phi(a)$ a predicate: Иа. $\Phi(a)$ means ' $\Phi(a)$ holds of all but finitely many a^{\prime}.

A predicate \mathcal{P} is a set of universes such that

$$
\text { Иa.Иb. }(a b) \mathcal{P}=\mathcal{P}
$$

See [Gabbay \& Pitts 99] and later literature. Intuitively, \mathcal{P} may mention many atoms, but only finitely many in a 'distinguished manner'.

Predicates

\mathcal{U} (set of all universes) is a predicate.
\emptyset (empty set of no universes) is a predicate.
Any finite set of universes, is a predicate.
Any set of universes mentioning colours from some finite set d, is a predicate.
The set of all universes not mentioning colours from some finite set d, is a predicate.

Order the colours $a_{1}, a_{2}, a_{3}, \ldots$.
The set of universes not mentioning even colours, is not a predicate - it is not fixed by ($a b$) for any cofinite (complement is finite) set of colours for the a, b.

Operations on predicates

$\langle\mathcal{P}\rangle$ is the least set containing \mathcal{P} and closed under \rightarrow. This is a predicate (easy lemma).

$$
\begin{aligned}
\mathcal{P} \otimes Q & =\left\{U_{P} \uplus U_{Q} \quad \mid \quad U_{P} \in \mathcal{P}, U_{Q} \in Q\right\} \\
\mathcal{P} \Rightarrow Q & =\{U \mid U \uplus\langle\mathcal{P}\rangle \subseteq Q\}
\end{aligned}
$$

Note we use $\langle\mathcal{P}\rangle$, allowing cut-and-paste in \mathcal{P} !
Here $U \uplus \mathcal{P}=\left\{U \uplus U_{p} \quad \mid \quad U_{p} \in \mathcal{P}\right\}$.

More operations on predicates

$$
\begin{aligned}
\mathcal{P}+c & =\{U+c \quad \mid \quad U-c \in \mathcal{P}\} \\
\mathcal{P}-c & =\{U-c \quad \mid \quad U+c \in \mathcal{P}\} \\
{[c] \mathcal{P} } & =\left\{U \mid И c^{\prime} .\left(c^{\prime} c\right) U \in \mathcal{P}\right\} .
\end{aligned}
$$

$\mathcal{P}-c$ is the c-coloured part of \mathcal{P}, bleached.
$\mathcal{P}+c$ is the c-uncoloured part of \mathcal{P}, painted.
$[c] \mathcal{P}$ is the c-uncoloured part of \mathcal{P}, with the c-coloured part replaced by a c-coloured version of a c^{\prime}-coloured part (note $\left(c^{\prime} c\right) U \in \mathcal{P}$ iff $\left.U \in\left(c^{\prime} c\right) \mathcal{P}\right)$.

For example

$(\mathcal{P} \otimes Q) \pm c=(\mathcal{P} \pm c) \otimes(Q \pm c)$.
$(\mathcal{P} \Rightarrow Q) \pm c \neq(\mathcal{P} \pm c) \Rightarrow(Q \pm c)$ in general, because $\langle\mathcal{P} \pm c\rangle \neq\langle\mathcal{P}\rangle \pm c$ in general.
$[c](\mathcal{P}+c)=\mathcal{P} \cap\{\emptyset\}$ (here \emptyset is the multiset with $|\emptyset|=\emptyset$).
$\left.\mathcal{P}\right|_{c}=(\mathcal{P}-c)+c=\{U \in \mathcal{P} \quad \mid \quad U=U+c\} . \quad$ Restrict \mathcal{P} to c.
If $c \# \mathcal{P}$ then $[c] \mathcal{P}=\mathcal{P}$.
$c \#[c] \mathcal{P}$.
Write $a \# \mathcal{P}$ when $И a^{\prime} .\left(a^{\prime} a\right) \mathcal{P}=\mathcal{P}$.

Multiplicative (separating) implication

Define $\mathcal{P} \multimap Q=$ Иc. $[c]((\mathcal{P}+c \Rightarrow Q+c)-c)$.
Lemma: $U \in \mathcal{P} \multimap Q$ when $U \uplus \mathcal{P} \subseteq Q$.
Lemma: $(\mathcal{P} \otimes Q) \multimap \mathcal{R}=\mathcal{P} \multimap(Q \multimap \mathcal{R})$.

Additive (logical) implication

$$
\begin{aligned}
\square_{c} \mathcal{P}= & \{U \uplus U-c \quad \mid \quad U \in \mathcal{P}+c\} \cup \\
& (\mathcal{U} \backslash\{U+c \uplus U-c \quad \mid \quad U \in \mathcal{U}\})
\end{aligned}
$$

Define $\mathcal{P} \supset \mathcal{Q}=$ Иc. $[c]\left(\mathcal{P}+c \Rightarrow \square_{c} Q\right)$.

Lemma: $\mathcal{P} \supset Q=(\mathcal{U} \backslash \mathcal{P}) \cup Q$.
(So $\mathcal{P} \supset Q$ represents 'if \mathcal{P} then Q^{\prime}.)

Bang

Suppose $\mathcal{P}=\left.\mathcal{P}\right|_{c}$. Set $!\mathcal{P}=\mathcal{P}-c$. $\langle\mathcal{P}\rangle=\mathcal{P}$ but in general $\langle!\mathcal{P}\rangle \neq\langle\mathcal{P}\rangle$, because with c bleached cut-and-paste is now possible.

Conclusions

I have presented a model!
I have explored the details of the constructions necessary to interpret bunched implications and linear logic within it.
I claim that this interpretation is sound.
! is interpreted as a 'you may now weaken and contract' instruction, consistent with its intuitive interpretation.
The multiplicative and additive connectives are implemented using

$$
\mathcal{P}+c \quad \mathcal{P}-c \quad \text { Ис. }[c] \mathcal{P} \quad \square_{c} \mathcal{P}
$$

as is bang. That's three modalities, and a quantifier.

Current and future work

I am writing up all the calculations I omitted in this talk.
Note that this model is classical, whereas bunched implications is intuitionistic. This is good; classical bunched implications is an interesting topic!
Proof theory for colourful logic (sequent rules for the modalities and $И$)?

Extend colourful logic to predicates?

Why И?

Why did we use this quantifier? Why not simply insist that there is some finite set of colours such that for all $U \in \mathcal{P}$ the colours in U are in that finite set?

Because that would make it impossible to model negation as $\mathcal{U} \backslash \mathcal{P}$!
$И$ lets us choose fresh names even in the presence of infinite sets. We have used this in an integral way to make the whole system work.

