
Functional programming and unification with

meta-variables

Murdoch J. Gabbay

Universidad Politecnica de Madrid, 30/3/2006

Thanks to Jim Lipton and Julio Mariño

Functional programming and unification with meta-variables UPM, 30/3/2006. 1

The purpose of this talk. . .

. . . is to publicise two separate threads of ideas which (perhaps) we

might use as the germ of a mathematical discussion in the future.

In other words, I think this is totally cool stuff and I want to tell you all

about it.

This is a research seminar, so reserve I the perogative my ideas in the

wrong order to put.

But you Spanish probably think that sentence is perfectly grammatical,

don’t you?

Functional programming and unification with meta-variables UPM, 30/3/2006. 2

Nominal Terms

Nominal Terms model abstraction (in the sense of α-equivalence)

without functional abstraction (in the sense of β-equivalence).

Mathematically this is quite interesting!

It brings things into balance: β-equivalence has a well-understood

semantics (sets and functions between them). Nominal Terms also have

a well-understood semantics (Fraenkel-Mostowski sets).

Functional programming and unification with meta-variables UPM, 30/3/2006. 3

Substitution

Substitution seems to sit in between α-equivalence and β-equivalence.

It uses abstraction

a[a7→t] = b[b7→t]

in the sense that atoms ‘bound’ by substitution.

But it is not as powerful as β-equivalence: it cannot represent functions.

I will talk about the theory and semantics of substitution, approached in

‘nominal’ style.

Functional programming and unification with meta-variables UPM, 30/3/2006. 4

Syntax of nominal terms

Fix countably many atoms a, b, c, Fix some term-formers f. Let π

vary over finitely-supported bijections on atoms.

π is finitely supported when π(a) = a for all atoms except for finitely

many atoms.

Fix countably many unknowns X . These are morally ‘unknown terms’,

but represented in the syntax. In short, X is a variable.

The syntax of nominal terms is given by:

t ::= a | πX | [a]t | f(t, . . . , t).

a is an atom. πX is an unknown term with a suspended permutation.

[a]t is an abstraction. f(t, . . . , t) is a term!

Functional programming and unification with meta-variables UPM, 30/3/2006. 5

λ-calculus

We can specify a signature of the λ-calculus with just three constants:

λ app sub.

(Sugar app(t, u) as tu and sub([a]t, u) as t[a7→u].)

We use these to write the rule

(λ[a]t)u = t[a7→u].

Functional programming and unification with meta-variables UPM, 30/3/2006. 6

Why use abstraction

The standard minimal theory of equality on nominal terms is given by

the rule:

a#t, b#t ⇒ (a b)t = t.

Here a#t means that if a occurs in t then it does so under an

abstraction. Think of a#t as a generalisation of a 6∈ fn(t).

fn(t) equals ‘free names of t’.

(a b)t is a and b swapped in t.

Call this theory of equality CORE.

Functional programming and unification with meta-variables UPM, 30/3/2006. 7

For example:

The canonical example is

b#X ⇒ [a]X = [b](b a)X.

Note that (b a)[a]X = [b](b a)X .

That is, we need permutations to handle renaming in the presence of

unknowns X .

CORE is α-equivalence.

Functional programming and unification with meta-variables UPM, 30/3/2006. 8

β

If we add this equality

(λ[a]t)u = t[a7→u]

we get LAMBDA.

But of course there’s a bit missing — the theory of substitution.

Functional programming and unification with meta-variables UPM, 30/3/2006. 9

Theory of substitution SUB

a#Z ⇒ Z[a7→X] = Z

f(Z1, . . . , Zn)[a7→X] = f(Z1[a7→X], . . . , Zn[a7→X])

b#X ⇒ ([b]Y)[a7→X] = [b](Y [a7→X])

b#X ⇒ X[a7→b] = (b a)X

a[a7→X] = X

Functional programming and unification with meta-variables UPM, 30/3/2006. 10

Some notes

I switched from using meta-variables t, u to unknowns X,Y,Z . The

axioms of the last slide should be understood as valid also for

instantiating unknowns.

(This is no big deal.)

Note also the axiom b#X ⇒ X[a7→b] = (b a)X . This raises the

question

Q. If you can express swapping using substitution, why bother

with all this swapping nonsense?

A. Because X[a7→b] has one more term-former than X

whereas (b a)X does not. With swapping we can rename

atoms to avoid capture, without increasing the size of a term.

Of course we could base an entire theory on substitution rather than

renaming — but that would defeat our purpose.

Functional programming and unification with meta-variables UPM, 30/3/2006. 11

Example equality

Suppose a#u. Then

v[a7→t][b7→u] = v[b7→u][a7→t[b7→u]]

is derivable. Remember that sub is just another term-former!

sub([b](sub([a]v, t)), u) = sub([a](sub([b]v, u)), sub([b]t, u)).

Functional programming and unification with meta-variables UPM, 30/3/2006. 12

Computability of substitution

As these equalities suggest:

v[a7→t][b7→u] = v[b7→u][a7→t[b7→u]] b#v ⇒ v[a7→u] = ((b a)v)[b7→u]

it is not immediately obvious that equality up to SUB is decidable. In

fact, this is actually quite hard to prove!

But we did, and it is.

Functional programming and unification with meta-variables UPM, 30/3/2006. 13

Cool questions (set 1)

What about unification up to SUB? What is its relation to higher-order

unification. Is it decidable?

What lambda-calculi (and logics) can we build to program on this

substitution?

Functional programming and unification with meta-variables UPM, 30/3/2006. 14

The NEW calculus of contexts: the issue

Consider the term λx.t.

x is a variable symbol and t is a meta-level variable, ranging over

λ-terms.

Instantiation of t does not avoid capture: if we set t to be x, we get

λx.x.

Functional programming and unification with meta-variables UPM, 30/3/2006. 15

The issue

Claim: This is the essence of the meta-level.

Substitution of ‘strong’ (meta-level) variables for ‘weak’ (object-level)

variables does not avoid capture.

Substitution of variables of the same level does avoid capture.

Let’s base a calculus on this idea.

Functional programming and unification with meta-variables UPM, 30/3/2006. 16

The issue

Suppose x is weak (level 1, say) and X is stronger (level 2, say), then

(λX.λx.X)x (λx.X)[X 7→x]

 λx.(X[X 7→x]) λx.x.

This is important because it captures some part of meta-programming.

Functional programming and unification with meta-variables UPM, 30/3/2006. 17

The syntax

Suppose sets of variables ai, bi, ci, ni, . . . for i ≥ 1.

ai has level i. Syntax is given by:

s, t ::= ai | tt | λai.t | t[ai 7→t] | Nai. t.

• s[ai 7→t] is explicit substitution.

• λai.t is abstraction.

• Nai. t a binder.

Equate up to N-binding, nothing else.

Call bj stronger than ai when j > i.

E.g. b3 is stronger than a1.

Functional programming and unification with meta-variables UPM, 30/3/2006. 18

Example terms and reductions

x, y, z have level 1. X,Y,Z have level 2.

(λx.x)y x[x7→y] y Ordinary reduction

(λx.X)[X 7→x] λx.(X [X 7→x]) λx.x Context substitution

x[X 7→t] x X stronger than x

x[x′ 7→t] x Ordinary substitution

x[x7→t] t Ordinary substitution

X[x7→t] 6 Suspended substitution

Functional programming and unification with meta-variables UPM, 30/3/2006. 19

Records

Fix constants 1 and 2.

l and m have level 1, X has level 2.

A record:

X[l 7→1][m 7→2]

A record lookup:

X[l 7→1][m7→2][X 7→m] X[l 7→1][X 7→m][m7→2]

 X[X 7→m][l 7→1][m7→2]

 m[l 7→1][m7→2]

 m[m7→2]

 2.

Functional programming and unification with meta-variables UPM, 30/3/2006. 20

In-place update

X[l 7→1][m7→2][X 7→X[l 7→2]] X[l 7→1][X 7→X[l 7→2]][m7→2]

 X[X 7→X[l 7→2]][l 7→1][m7→2]

 X[l 7→2][l 7→1][m7→2]

 X[l 7→2][m7→2]

Functional programming and unification with meta-variables UPM, 30/3/2006. 21

Substitution-as-a-term

(λX.X[l 7→λn.n]) applied to lm

(λX.X[l 7→λn.n])lm X[l 7→λn.n][X 7→lm] ∗ (λn.n)m

Functional programming and unification with meta-variables UPM, 30/3/2006. 22

In-place update as a term

λW.W[X 7→X[l 7→2]] applied toX[l 7→1][m7→2]

. . . and so on (W has level 3).

Likewise global state (world = a big hole), and Abadi-Cardelli imp-ε

object calculus.

Functional programming and unification with meta-variables UPM, 30/3/2006. 23

Records (again, using λ)

Fix constants 1 and 2.

l and m have level 1. X has level 2.

A record:

λX.X[l 7→1][m7→2].

Now we use application to retrieve the value stored at m:

(λX.X[l 7→1][m7→2])m X[l 7→1][m7→2][X 7→m]

Functional programming and unification with meta-variables UPM, 30/3/2006. 24

Records (again, using λ)

λX.X[l 7→W][m7→2]

Here W has level 3. It beats X , l, and m.

Apply [W7→X]:
(

λX.X[l 7→W][m7→2]
)

[W7→X] ∗ λX.X[l 7→X][m7→2].

Apply to (lm) and obtain (l2)2:
(

λX.X[l 7→X][m7→2]
)

(lm) ∗ lm[l 7→lm][m7→2] ∗ (l2)2

Functional programming and unification with meta-variables UPM, 30/3/2006. 25

Records (again, using λ)

(

λW.λX.X[l 7→W][m7→2]
)

X(lm) ∗ (l2)2

Is that wrong?

Depends what you want.

This kind of thing makes the Abadi-Cardelli ‘self’ variable work. The

issue is that λ does not bind — it abstracts.

Functional programming and unification with meta-variables UPM, 30/3/2006. 26

N

NX.
(

λX.X[l 7→W][m7→2]
)

.

Then

(

NX. λX.X[l 7→W][m7→2]
)

[W7→X]

∗ NX ′. (λX ′.X ′[l 7→W][m7→2][W7→X])

∗ NX ′. λX ′.X ′[l 7→X][m7→2]

Apply to lm:

NX ′. (λX ′.X ′[l 7→X][m7→2]) (lm)

 NX ′. ((λX ′.X ′[l 7→X][m7→2]) (lm))

 NX ′. X ′[l 7→X][m7→2][X ′ 7→lm] ∗ (X[m7→2])2

Nbehaves like the π-calculus ν; it floats to the top (extrudes scope).

Functional programming and unification with meta-variables UPM, 30/3/2006. 27

Summary

1. λ abstracts — it stays put and β-reduces.

2. [x7→s] substitutes — it floats downwards capturing x until it runs

out of term or gets stuck on a stronger variable.

3. Nbinds — it floats upwards avoiding capture.

Functional programming and unification with meta-variables UPM, 30/3/2006. 28

Reduction rules

(β) (λai.s)u s[ai 7→u]

(σa) ai[ai 7→u] u ∀c. c#ai⇒c#u

(σ#) s[ai 7→u] s ai#s

(σp) (ait1 . . . tn)[bj 7→u] (ai[bj 7→u]) . . . (tn[bj 7→u])

(σσ) s[ai 7→u][bj 7→v] s[bj 7→v][ai 7→u[bj 7→v]] j>i

(σλ) (λai.s)[ck 7→u] λai.(s[ck 7→u]) ai#u, ck k≤i

(σλ′) (λai.s)[bj 7→u] λai.(s[bj 7→u]) j > i

(σtr) s[ai 7→ai] s

(Np) (Nnj . s)t Nnj . (st) nj 6∈t

(Nλ) λai. Nnj . s Nnj . λai.s nj 6=ai

(Nσ) (Nnj . s)[ai 7→u] Nnj . (s[ai 7→u]) nj 6∈u nj 6=ai

(N6∈) Nnj . s s nj 6∈s

Functional programming and unification with meta-variables UPM, 30/3/2006. 29

Partial evaluation (if I have time)

Write

if = λa, b, c.abc true = λab.a false = λab.b

not = λa.if a false true.

in untyped λ-calculus. Then calculate

s = λf, a.if a (f a) a specialised to s not

by β-reduction. We obtain λa.if a (not a) a.

A more intelligent method may recognise that the program will always

return false (with types etc.).

Functional programming and unification with meta-variables UPM, 30/3/2006. 30

Partial evaluation (if I have time)

Choose level 1 variables a, b and level 2 variables and B,C and define

true = λab.a false = λab.b

if = λa,B,C. a(B[a7→true])(C[a7→false])

not = λa.if a false true.

So if we get to B, a = true. Consider

s = λf, a.if a (f a) a specialised to s not.

We obtain:

s not
∗ λa.a ((notB)[a 7→true][B 7→a]) (C[a7→false][C 7→a])

∗ λa.a ((nota)[a7→true]) (a[a7→false])

∗ λa.(a false false).

More efficient!

Functional programming and unification with meta-variables UPM, 30/3/2006. 31

Meta-properties

• Confluence.

• Preservation of strong normalisation (for untyped lambda-calculus).

• Hindley-Milner type system. Explicit substitution rule is like that for

let.

• Applicative characterisation of contextual equivalence.

Functional programming and unification with meta-variables UPM, 30/3/2006. 32

Conclusions

The meta-level lives in the same world as the object calculus. So does

the meta-meta-level. And so on.

This is not achieved by a type-hierarchy: it is achieved by literally

insisting on variables of different strengths.

Scope separate from abstraction; necessary for proper control of

α-equivalence in the presence of the hierarchy.

Hierarchy of strengths of variables in common with work by Sato et al.

But we have different control of α-equivalence.

Explicit substitution calculus.

Model of state, unordered datatypes, and objects. Probably more.

Functional programming and unification with meta-variables UPM, 30/3/2006. 33

Bringing together substitution and the NEW calculus of contexts

Very simple question:

What about a programming language with meta-programming ideas

taken from the NEWcc, and unification ideas taken from nominal

unification or variants thereof?

In other words: what logic programming languages can we get out of

this stuff?

Functional programming and unification with meta-variables UPM, 30/3/2006. 34

