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The purpose of this talk. . .

. . . is to publicise two separate threads of ideas which (perhaps) we

might use as the germ of a mathematical discussion in the future.

In other words, I think this is totally cool stuff and I want to tell you all

about it.

This is a research seminar, so reserve I the perogative my ideas in the

wrong order to put.

But you Spanish probably think that sentence is perfectly grammatical,

don’t you?
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Nominal Terms

Nominal Terms model abstraction (in the sense of α-equivalence)

without functional abstraction (in the sense of β-equivalence).

Mathematically this is quite interesting!

It brings things into balance: β-equivalence has a well-understood

semantics (sets and functions between them). Nominal Terms also have

a well-understood semantics (Fraenkel-Mostowski sets).
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Substitution

Substitution seems to sit in between α-equivalence and β-equivalence.

It uses abstraction

a[a7→t] = b[b7→t]

in the sense that atoms ‘bound’ by substitution.

But it is not as powerful as β-equivalence: it cannot represent functions.

I will talk about the theory and semantics of substitution, approached in

‘nominal’ style.
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Syntax of nominal terms

Fix countably many atoms a, b, c, . . .. Fix some term-formers f. Let π

vary over finitely-supported bijections on atoms.

π is finitely supported when π(a) = a for all atoms except for finitely

many atoms.

Fix countably many unknowns X . These are morally ‘unknown terms’,

but represented in the syntax. In short, X is a variable.

The syntax of nominal terms is given by:

t ::= a | πX | [a]t | f(t, . . . , t).

a is an atom. πX is an unknown term with a suspended permutation.

[a]t is an abstraction. f(t, . . . , t) is a term!
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λ-calculus

We can specify a signature of the λ-calculus with just three constants:

λ app sub.

(Sugar app(t, u) as tu and sub([a]t, u) as t[a7→u].)

We use these to write the rule

(λ[a]t)u = t[a7→u].
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Why use abstraction

The standard minimal theory of equality on nominal terms is given by

the rule:

a#t, b#t ⇒ (a b)t = t.

Here a#t means that if a occurs in t then it does so under an

abstraction. Think of a#t as a generalisation of a 6∈ fn(t).

fn(t) equals ‘free names of t’.

(a b)t is a and b swapped in t.

Call this theory of equality CORE.
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For example:

The canonical example is

b#X ⇒ [a]X = [b](b a)X.

Note that (b a)[a]X = [b](b a)X .

That is, we need permutations to handle renaming in the presence of

unknowns X .

CORE is α-equivalence.
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β

If we add this equality

(λ[a]t)u = t[a7→u]

we get LAMBDA.

But of course there’s a bit missing — the theory of substitution.
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Theory of substitution SUB

a#Z ⇒ Z[a7→X] = Z

f(Z1, . . . , Zn)[a7→X] = f(Z1[a7→X], . . . , Zn[a7→X])

b#X ⇒ ([b]Y )[a7→X] = [b](Y [a7→X])

b#X ⇒ X[a7→b] = (b a)X

a[a7→X] = X
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Some notes

I switched from using meta-variables t, u to unknowns X,Y,Z . The

axioms of the last slide should be understood as valid also for

instantiating unknowns.

(This is no big deal.)

Note also the axiom b#X ⇒ X[a7→b] = (b a)X . This raises the

question

Q. If you can express swapping using substitution, why bother

with all this swapping nonsense?

A. Because X[a7→b] has one more term-former than X

whereas (b a)X does not. With swapping we can rename

atoms to avoid capture, without increasing the size of a term.

Of course we could base an entire theory on substitution rather than

renaming — but that would defeat our purpose.
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Example equality

Suppose a#u. Then

v[a7→t][b7→u] = v[b7→u][a7→t[b7→u]]

is derivable. Remember that sub is just another term-former!

sub([b](sub([a]v, t)), u) = sub([a](sub([b]v, u)), sub([b]t, u)).
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Computability of substitution

As these equalities suggest:

v[a7→t][b7→u] = v[b7→u][a7→t[b7→u]] b#v ⇒ v[a7→u] = ((b a)v)[b7→u]

it is not immediately obvious that equality up to SUB is decidable. In

fact, this is actually quite hard to prove!

But we did, and it is.
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Cool questions (set 1)

What about unification up to SUB? What is its relation to higher-order

unification. Is it decidable?

What lambda-calculi (and logics) can we build to program on this

substitution?
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The NEW calculus of contexts: the issue

Consider the term λx.t.

x is a variable symbol and t is a meta-level variable, ranging over

λ-terms.

Instantiation of t does not avoid capture: if we set t to be x, we get

λx.x.
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The issue

Claim: This is the essence of the meta-level.

Substitution of ‘strong’ (meta-level) variables for ‘weak’ (object-level)

variables does not avoid capture.

Substitution of variables of the same level does avoid capture.

Let’s base a calculus on this idea.
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The issue

Suppose x is weak (level 1, say) and X is stronger (level 2, say), then

(λX.λx.X)x (λx.X)[X 7→x]

 λx.(X[X 7→x]) λx.x.

This is important because it captures some part of meta-programming.
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The syntax

Suppose sets of variables ai, bi, ci, ni, . . . for i ≥ 1.

ai has level i. Syntax is given by:

s, t ::= ai | tt | λai.t | t[ai 7→t] | Nai. t.

• s[ai 7→t] is explicit substitution.

• λai.t is abstraction.

• Nai. t a binder.

Equate up to N-binding, nothing else.

Call bj stronger than ai when j > i.

E.g. b3 is stronger than a1.
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Example terms and reductions

x, y, z have level 1. X,Y,Z have level 2.

(λx.x)y  x[x7→y] y Ordinary reduction

(λx.X)[X 7→x] λx.(X [X 7→x]) λx.x Context substitution

x[X 7→t] x X stronger than x

x[x′ 7→t] x Ordinary substitution

x[x7→t] t Ordinary substitution

X[x7→t] 6 Suspended substitution
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Records

Fix constants 1 and 2.

l and m have level 1, X has level 2.

A record:

X[l 7→1][m 7→2]

A record lookup:

X[l 7→1][m7→2][X 7→m] X[l 7→1][X 7→m][m7→2]

 X[X 7→m][l 7→1][m7→2]

 m[l 7→1][m7→2]

 m[m7→2]

 2.
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In-place update

X[l 7→1][m7→2][X 7→X[l 7→2]] X[l 7→1][X 7→X[l 7→2]][m7→2]

 X[X 7→X[l 7→2]][l 7→1][m7→2]

 X[l 7→2][l 7→1][m7→2]

 X[l 7→2][m7→2]
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Substitution-as-a-term

(λX.X[l 7→λn.n]) applied to lm

(λX.X[l 7→λn.n])lm X[l 7→λn.n][X 7→lm] ∗ (λn.n)m
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In-place update as a term

λW.W[X 7→X[l 7→2]] applied toX[l 7→1][m7→2]

. . . and so on (W has level 3).

Likewise global state (world = a big hole), and Abadi-Cardelli imp-ε

object calculus.
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Records (again, using λ)

Fix constants 1 and 2.

l and m have level 1. X has level 2.

A record:

λX.X[l 7→1][m7→2].

Now we use application to retrieve the value stored at m:

(λX.X[l 7→1][m7→2])m X[l 7→1][m7→2][X 7→m]
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Records (again, using λ)

λX.X[l 7→W][m7→2]

Here W has level 3. It beats X , l, and m.

Apply [W7→X]:
(

λX.X[l 7→W][m7→2]
)

[W7→X] ∗ λX.X[l 7→X][m7→2].

Apply to (lm) and obtain (l2)2:
(

λX.X[l 7→X][m7→2]
)

(lm) ∗ lm[l 7→lm][m7→2] ∗ (l2)2
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Records (again, using λ)

(

λW.λX.X[l 7→W][m7→2]
)

X(lm) ∗ (l2)2

Is that wrong?

Depends what you want.

This kind of thing makes the Abadi-Cardelli ‘self’ variable work. The

issue is that λ does not bind — it abstracts.
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N

NX.
(

λX.X[l 7→W][m7→2]
)

.

Then

(

NX. λX.X[l 7→W][m7→2]
)

[W7→X]

 
∗ NX ′. (λX ′.X ′[l 7→W][m7→2][W7→X])

 
∗ NX ′. λX ′.X ′[l 7→X][m7→2]

Apply to lm:

NX ′. (λX ′.X ′[l 7→X][m7→2]) (lm)

 NX ′. ((λX ′.X ′[l 7→X][m7→2]) (lm))

 NX ′. X ′[l 7→X][m7→2][X ′ 7→lm] ∗ (X[m7→2])2

Nbehaves like the π-calculus ν; it floats to the top (extrudes scope).
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Summary

1. λ abstracts — it stays put and β-reduces.

2. [x7→s] substitutes — it floats downwards capturing x until it runs

out of term or gets stuck on a stronger variable.

3. Nbinds — it floats upwards avoiding capture.
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Reduction rules

(β) (λai.s)u s[ai 7→u]

(σa) ai[ai 7→u] u ∀c. c#ai⇒c#u

(σ#) s[ai 7→u] s ai#s

(σp) (ait1 . . . tn)[bj 7→u] (ai[bj 7→u]) . . . (tn[bj 7→u])

(σσ) s[ai 7→u][bj 7→v] s[bj 7→v][ai 7→u[bj 7→v]] j>i

(σλ) (λai.s)[ck 7→u] λai.(s[ck 7→u]) ai#u, ck k≤i

(σλ′) (λai.s)[bj 7→u] λai.(s[bj 7→u]) j > i

(σtr) s[ai 7→ai] s

( Np) ( Nnj . s)t Nnj . (st) nj 6∈t

( Nλ) λai. Nnj . s Nnj . λai.s nj 6=ai

( Nσ) ( Nnj . s)[ai 7→u] Nnj . (s[ai 7→u]) nj 6∈u nj 6=ai

( N6∈) Nnj . s s nj 6∈s
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Partial evaluation (if I have time)

Write

if = λa, b, c.abc true = λab.a false = λab.b

not = λa.if a false true.

in untyped λ-calculus. Then calculate

s = λf, a.if a (f a) a specialised to s not

by β-reduction. We obtain λa.if a (not a) a.

A more intelligent method may recognise that the program will always

return false (with types etc.).
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Partial evaluation (if I have time)

Choose level 1 variables a, b and level 2 variables and B,C and define

true = λab.a false = λab.b

if = λa,B,C. a(B[a7→true])(C[a7→false])

not = λa.if a false true.

So if we get to B, a = true. Consider

s = λf, a.if a (f a) a specialised to s not.

We obtain:

s not  
∗ λa.a ((notB)[a 7→true][B 7→a]) (C[a7→false][C 7→a])

 
∗ λa.a ((nota)[a7→true]) (a[a7→false])

 
∗ λa.(a false false).

More efficient!
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Meta-properties

• Confluence.

• Preservation of strong normalisation (for untyped lambda-calculus).

• Hindley-Milner type system. Explicit substitution rule is like that for

let.

• Applicative characterisation of contextual equivalence.
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Conclusions

The meta-level lives in the same world as the object calculus. So does

the meta-meta-level. And so on.

This is not achieved by a type-hierarchy: it is achieved by literally

insisting on variables of different strengths.

Scope separate from abstraction; necessary for proper control of

α-equivalence in the presence of the hierarchy.

Hierarchy of strengths of variables in common with work by Sato et al.

But we have different control of α-equivalence.

Explicit substitution calculus.

Model of state, unordered datatypes, and objects. Probably more.
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Bringing together substitution and the NEW calculus of contexts

Very simple question:

What about a programming language with meta-programming ideas

taken from the NEWcc, and unification ideas taken from nominal

unification or variants thereof?

In other words: what logic programming languages can we get out of

this stuff?
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