
Nominal: an Overview

Murdoch J Gabbay

UPM, Madrid, Spain 30/3/2006

Thanks to Julio Mariño and Angel Herrenz

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 1

Purpose of this talk . . .

. . . is to give some idea of what I’m doing, without going into technical

detail. I will follow a more-or-less chronological framework.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 2

Thesis

Invented Fraenkel-Mostowski set theory (FM sets, aka Nominal Sets),

the Nquantifier, and inductive-datatypes-with-binding.

Also implemented FM sets in Isabelle and designed one version of what

later became FreshML.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 3

FM sets

FM sets is a variant of Zermelo-Fraenkel set theory (ZF sets) with atoms

(urelemente).

ZF sets is the dominant notion of set, used in foundations of

mathematics (apologies to Quine’s New Foundations!).

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 4

FM sets

ZF sets with atoms (ZFA) admits sets ‘from outside’, such as ‘the set of

greeks’ or ‘the set of mortals’ without insisting these be modelled a

partir de the empty set.

E.g. not all greeks have to look like {{}, {{}}, {{}, {{}}}}; we admit

{Socrates} where Socrates is an urelement.

These atoms are collected and form a set of atoms A.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 5

Fraenkel-Mostowski sets. . .

. . . enriches ZFA with an axiom saying there are infinitely many atoms,

and with the ‘fresh axiom’

∀z. Na. Nb. (b a) · z = z

Here a is an atom and z is any set.

Na. φ(a) means:

• Perhaps ¬φ(a) for some finite set S.

• However, φ(a) holds for all atoms a 6∈ S.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 6

The fresh axiom

I’ll say what swapping is in a moment.

Na. Nb. (b a) · z unpacks as

∃Sa, Sb. Sa finite∧Sb finite∧∀a ∈ A\Sa. ∀b ∈ A\Sb. (b a)·z = z.

Since Sa ∨ Sb is finite, this simplifies to:

∃S. S finite ∧ ∀a, b ∈ (A\S). (b a) · z = z

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 7

Swapping

In FM a z is either an atom, or a set {z′ | z′ ∈ z}. So. . .

(b a) · a = b

(b a) · b = a

(b a) · c = c

(b a) · z = {(b a) · z′ | z′ ∈ z}.

As a picture this is very easy to understand: swapping swaps atoms in

sets, wherever (and however deep) they may appear in the term.

Swapping is bijective, so if (b a) · z 6= z it must be that z mentions b in

some ‘distinguished’ way in its structure. The finiteness axiom

generalises ‘finite variable support’ to sets.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 8

Why is this useful?

Aside from the beauty of this idea . . .

Note that (b a) · x = (b a) · y if and only if x = y.

Note that (b a) · x ∈ (b a) · y if and only if x ∈ y.

Note that (b a) · A = A.

Recall that FM sets is merely a theory of first-order logic in the language

(=: 2, ∈: 2, A : 0).

So we have the principle of equivariance:

Φ(x1, . . . , xn) ⇔ Φ((b a) · x1, . . . , (b a) · xn).

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 9

Problem with inductive principles

This solved a big problem in the formal (e.g. mechanised, in Isabelle)

theory of inductive datatypes.

Suppose you have some inductive hypothesis

Φ(z) = ∀b, a, x. φ(b, z, a, x) where φ is

a ∈ A ∧ b ∈ A ∧ x ∈ Λ ∧ b 6∈ fv(z) ∧ b 6∈ fv(x)

⇒ b 6∈ fv(z[a7→x]).

Here Λ is some sets-based implementation of a datatype such as

t ::= a | tt | λa.t.

Now you want to prove Φ(z) implies Φ(λb.z).

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 10

Problem with inductive principles

Unfortunately b ∈ x so your definition of substitution tells you

(λb.z)[a7→x] = λb′.((b′b) · z)[a7→x]

for some fixed but arbitrary b′ 6∈ fv(z, x) ∪ {a, b}.

((b′ b) · z equals z[b7→b′], but is more useful, see below.)

So you have Φ(z) — not Φ((b′ b) · z).

¡Leces!

Ah — but you do have Φ((b′ b) · z), because of equivariance.

¡Muy bien!

Jamie 7→ Doctor Jamie.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 11

Abstraction sets

Another thing that came out of FM sets was a NEW model of

abstraction, which is to α-equivalence as functional abstraction is to

β-equivalence.

Just as a set Y X is populated by graphs of functions from elements of

X to elements of Y , so . . .

. . . a set [A]X is populated by elements [a]x for a ∈ A (atoms) and

x ∈ X , defined by

[a]x = {(b, (b a) · x) | b#x ∨ b = a}

Here b#x when Nb′. (b′ b) · x = x is a notion of ‘fresh for’.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 12

Fresh for

The this idea is not something I can do justice to in this talk.

Just a few examples:

• b#A since (b′ b) · A = A, since swapping is bijective on atoms.

• b#{a} since for S = {a} and b′ 6∈ S we have

(b′ b) · {a} = {a}.

• ¬(a#{a}).

• ¬(b#A\{b}) since (b′ b) · (A\{b}) = A\{b′}.

So ‘fresh for’ does not imply ‘not set-included in’. Corresponds more to

‘does not occur in any distinguished way in’.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 13

The basic theorem of abstraction sets:

[a]x = {(b, (b a) · x) | b#x ∨ b = a}

In fact, b#[a]x if and only if b#x, and a#[a]x.

This exactly replicates the behaviour of b 6∈ fv(z), with [a]x
corresponding to a binder.

So we can build Λ more compactly as

t ::= a | tt | λ[a]t.

Giving not only equivariance, but a true inductively defined datatype up

to binding.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 14

Nominal terms

But let’s talk about something else now. We have this semantic notion of

abstraction. Let’s define a language for talking about it:

t ::= a | π · X | ft | (t, t) | [a]t.

These are nominal terms. Note that they have a notion of abstraction

[a]t, with semantics which are not functional.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 15

Nominal terms

t ::= a | π · X | ft | (t, t) | [a]t.

ft is a term-former.

X is an ‘unknown element’.

π · X has a moderating permutation; π is a (finite) permutation on

atoms.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 16

Freshness

To express the capture-avoiding aspects of syntax with variable names

(and its abstract nominal version) we introduce an intentional notion of

freshness:

a#t

a#ft

a#t a#t′

a#(t, t′)

a#t

a#[b]t a#b a#[a]t

π-1(a)#X

a#π · X

Then the core equality of nominal terms, can be written as

a#X, b#X ` (a b) · X = X.

Believe it or not, this simple equality abstracts α-equivalence. That is,

the least congruence containing this equality (also instantiating X) is a

reasonable generalisation of α-equivalence to a syntax with unknowns

X , Y , Z .

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 17

The key point of nominal terms

The key point is not that nominal terms have abstraction (and

α-equivalence), but that they have abstraction in the presence of a kind

of unknown which can be substituted for in a capturing manner.

For example, we can set X to be [a]a in the core equality, and we

obtain

[b]b = [a]a

which is what you’d expect (a#[a]a and b#[b]b).

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 18

Advantages of nominal terms

[A]X has the same cardinality as X . Note that Y X does not have the

same cardinality as Y or X (in general).

This leads to good computational properties. For example, unification of

nominal terms is decidable (higher-order unification is not).

See work on Nominal Unification with Urban and Pitts — also α-prolog

by Urban and Cheney.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 19

Advantages of nominal terms

Yet rewriting of nominal terms is just as expressive as higher-order

rewriting, because we can express β-reduction as

(λ[a]Y)X → Y [a7→X].

Here we assume term-formers λ, app and sub with sugar

app(t, u) = tu sub([a]u, t) = u[a7→t].

There’s a body of work on Nominal Rewriting, with Fernández.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 20

Equalities on nominal terms

My last ‘chunk’ of work was with Mathijssen in TU/e.

We developed the abstract theory of equality on nominal terms. That is,

we developed Nominal Algebra. Nominal terms let us talk about

abstraction, you see.

For example, we wrote some axioms for substitution as an abstract

algebraic operation. These axioms turned out to be beautiful and subtle,

with a really quite difficult meta-theory. It was not easy (but we managed

it!) to prove them sound and complete for the canonical term model.

I am exploring abstract non-syntactic models of the theory. It turns out

that just the abstract models of nominal terms raise significant

mathematical questions.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 21

One-and-a-halfth-order logic

We used this to give an algebraic axiomatisation of first-order logic,

which Mathijssen wanted for mCRL2, and to develop

one-and-a-halfth-order-logic, which is a sequent system for first-order

logic, with first-class predicate unknowns.

So we can prove ∀[a]φ ⇒ φ[a7→X] where φ is an ‘unknown

predicate’ and X is an ‘unknown term’.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 22

Future work

Poernomo is interested in using this as a model for contexts and

software components.

I want to develop nominal terms as a programming language and logic,

and extend them with a hierarchy of unknowns.

I want to explore the semantics of nominal terms, also up to theories in

nominal algebra, also computation, e.g. unification.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 23

Conclusion

This is a brief non-detailed overview of a large and growing body of

work, by myself and others.

I believe there is something genuinely new and unexpected behind all

this. We are uncovering The Truth bit by bit, but there is lots more.

Nominal: an overview UPM, Madrid, Spain, 30/3/2006. 24

