
Concrete models of nominal algebra substitution. . .

. . . holey functions!

Murdoch J. Gabbay

Edinburgh University, Scotland, 13/6/2006

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 1

Substitution

Substitution u[a7→t] is generally thought of as an operation on syntax.

It seems to sit between α-equivalence

[a]t =α [b](b a)t (b fresh for t)

and β-equivalence

(λa.u)t =β u[a7→t].

Here a, b, c, . . . ∈ A are object-level variable symbols; atoms for short.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 2

Substitution

[a]t =α [b](b a)t (b fresh for t)

Here square brackets indicate some abstractor (λ, ∀).

(b a) denotes ‘swap b and a’.

Since b is assumed fresh for t this is identical (up to renaming bound

names) to ‘replace a by b’.

However, swapping has better meta-theoretic properties.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 3

Substitution

Why does substitution sit between α- and β-equivalence?

Obviously it underlies β-equivalence: it is mentioned in its definition.

Substitution contains some measure of α-equivalence in the first two

arguments, e.g.

a[a7→t] = b[b7→t].

In general,

v[a7→t] = ((b a)v)[b7→t] (b fresh for v).

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 4

What does substitution do?

Logics and λ-calculi generally use environment models for open terms.

We fix some assignment of variable symbols to denotational elements.

We then inductively extend the model using interpretations of the

term-formers of the syntax, to all terms.

So variable symbols do not exist in the denotation, and so neither does

substitution as a function on denotational elements.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 5

Alternatives (semantics)

Crabbé proposed a first-order logic axiomatisation of substiution.

Feldman proposed another.

In these models, variables exist in the underlying denotation (and can

be substituted for).

Semantics are therefore available for open terms.

However, these axiomatisations do not handle binding. Many interesting

systems, notably the λ-calculus, are excluded (or at best only partially

treated).

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 6

Alternatives (λ-calculi of explicit substitution)

Designed to measure the ‘cost of a β-reduction’.

This is not relevant for this talk; we are doing algebra today so x = y in

the underlying denotation is just a fact.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 7

Alternatives (syntax)

Handling abstract-syntax-with-binding in a theorem-prover or

programming language is a practical issue of a certain importance. For

example it was the object of my PhD (so it was very important to me).

De Bruijn indexes.

Higher-order abstract syntax.

Nominal techniques.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 8

Alternatives (syntax)

Nominal techniques are based on Fraenkel-Mostowski sets, which gave

(for the first time) a set-theoretic semantics to α-equivalence. Thus

given a set x — any x — we can build [a]x.

This was later characterised abstractly as nominal sets.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 9

Nominal sets

A nominal set is a set X with a swapping action mapping A ×A ×X to

X , satisfying the equalities of a permutation action

(a a)x = x (a b)(a b)x = x (a b)x = (b a)x

(a b)(n m)x = ((a b)n (a b)m)(a b)x

Plus the freshness axiom

Nb. b#x.

Here a and b vary permutatively over atoms and m and n vary

non-permutatively over atoms (so a 6= b but perhaps m ∈ {a, b, n}).

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 10

Alternatives (syntax)

Nb. b#x

Here if F is a function then Nb. F (b) is the unique value of F for ‘most’

(all but finitely many) b, if this exists.

a#x when Nb. (b a)x = x, so the freshness axiom is

Nb. Na. (b a)x = x.

It remains now to give axioms for substitution sets.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 11

Axioms for substitution

a#z ⇒ z[a7→x] = z

a[a7→x] = x

b#z ⇒ z[a7→b] = (b a)z

a#y ⇒ z[a7→x][b7→y] = z[b7→y][a7→x[b7→y]]

A substitution action is a ternary function from X × A × X to X.

Note the b in [a7→b] — we need to interpret atoms in X!

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 12

Substitution sets

Call a set X with

• an interpretation of A (an injection from A to X), and

• a substitution action,

a substitution set.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 13

Examples

A has a substitution action. Interpret a by a and define:

x[a7→y] = y (x = a or x = y)

x[a7→y] = x (x 6= a and x 6= y).

L (finite lists (), (a), (a, b, c, a), . . .) has a substitution action.

Interpret a by (a) and define . . . well, here are two examples:

(a, b, c)(b7→(a, b, c)) = (a, a, b, c, c)

(a, a, b)(b7→(b, a)) = (a, a, b, a).

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 14

More examples

Take untyped λ-terms

t ::= a | tt | λa.t

up to αβ-equivalence; write [[-]] for equivalence classes.

Interpret a by [[a]]. Define [[u]][a7→[[t]]] = [[u[a7→t]]].

This makes equivalence-classes of possibly open terms into a model of

substitution.

A corollary of confluence is that it does not matter which representatives

we choose, so this is well-defined.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 15

More examples

But in all these examples the atoms are ‘already in there’; they are just

syntax.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 16

The environment model

Take an ‘ordinary’ set, such as N. Write ⇒ for function-spaces.

(A ⇒ N) ⇒ N

is a model of substitution — provided we restrict to

τ = λκ.τ(κ) ∈ (A ⇒ N) ⇒ N

such that:

• there exists finite S ⊆ A such that

• if κ(a) = κ′(a) for all a ∈ S then τ(κ) = τ(κ′).

(‘τ examines just a finite part of its argument.’)

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 17

The environment model

Write this set N̂.

Interpret a by

λκ.κ(a).

Interpret µ[a7→τ] by

λκ ∈ (A ⇒ N). µ(κ{a7→τ(κ)}).

κ{a7→n} maps a to n and b to κ(b).

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 18

The environment model

An interesting element of N̂ is λκ.κ(a) ∗ κ(b).

This behaves like the syntax ‘a ∗ b’ — but it’s semantic;

(a ∗ b)[a7→2][b7→3] = λκ.6.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 19

Function models

(A subset of) the set of functions between two substitution sets X and

Y, is a substitution set.

We can write h[a7→f].

Holey functions.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 20

Function models

Fix h, f ∈ X ⇒ Y and a ∈ A.

Define:

h[a7→b]x = ((b a)h)x if b#h

(h[a7→f])x = Na′. (((a′a)h)x)[a′ 7→fx] otherwise.

Here b in h[a7→b] is the interpretation of b in X ⇒ Y, which is λx.b.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 21

Function models

This is loosely but more plainly specified by:

h[a7→b]x = ((b a)h)x if b#h

(h[a7→f])x = (hx)[a7→fx] if a#x, f

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 22

(Some calculations)

How is the specification of the last slide related to that of the one before?

Suppose a#x, f and a′ is fresh (a′#h, f, a, x).

Then a#(hx)[a7→fx] and so

(a′ a)x = x (a′ a)h = h (a′ a)f = f

and so

(a′ a)((hx)[a7→fx]) = ((a′ a)h(a′ a)x)[a′ 7→(a′ a)f(a′ a)x]

= ((a′ a)h)x)[a′ 7→fx].

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 23

Examples

t7→[a]t is a function in X ⇒ [A]X mapping x to [a]x.

If X is the ground term model for the syntax of the λ-calculus (call it Λ)

then we can compose with term-former λ in [A]X ⇒ X to obtain

t7→λa.t ∈ Λ ⇒ Λ.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 24

Examples

If x ∈ X then

‘the substitution [a7→x]’

can be represented as

λz.z[a7→x] ∈ X ⇒ X.

So we can represent substitution explicitly in the model.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 25

Examples

Elements can be considered as functions over their atoms, yet also as

data.

Thus we can write x[a7→y] and y[a7→x]; both are correct. In a typed

λ-calculus if yx is correct then xy is not; by virtue of the types once is

‘master’ and the other is ‘slave’.

With substitution instead of application there is no sense in which x is a

priori the ‘master’ (like a function in the simply-typed λ-calculus) and y

is a priori the ‘slave’ (its argument, of lower type).

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 26

Examples

λκ.κ(a) ∗ κ(b) ∈ N̂ represents (λn.λm.n ∗ m) if we use

substitutions instead of function application to instantiate.

Substitutions [a7→5] and [b7→6] can arrive in any order.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 27

Examples

Let B be a two-element set {>,⊥}.

in (A × X) ⇒ B̂ is such that #(a, x) = λκ.> when a#x and

otherwise #(a, x) = λκ.⊥.

Using # we can case-split on whether a value has been substituted for

an atom (in some programming language based on this semantics).

Perhaps we can take appropriate action to fetch a value.

Much more flexible treatment of unknowns than usual; variable symbols

can be detected at run-time, also at function-types!

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 28

Final example

An ‘exception handler’

λx.if a#x then x else x′ ∈ X ⇒ X

(using natural notation) treats a as an exception.

If it detects a it defaults to x′.

Important: the semantics propagates a for us.

We do not need to explicitly propagate of the exception, i.e. change

code to ‘chaperone’ a through intervening steps of the calculation.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 29

Conclusions

There is already interest in reflecting properties of variables and

freshness into logics and programming languages, to obtain good

models of and reasoning principles on syntax-with-binding.

. . . HOAS, ∇, N(nominal techniques), de Bruijn, theory of contexts,

FreshOCaml, . . .

A side-effect of nominal techniques was to reflect these into the

semantics itself.

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 30

Conclusions

I want to reflect another property of variables into the semantics; that of

‘being substituted for’. I want to do it to mirror informal practice:

If I have x and I have y, then I can write y[a7→x]; the parameters have

names which are themselves data!

The importance of the cartesian closed property is that we get a

programming language. Its power has not yet been established, but it’s

very strong as the examples given, and some others, demonstrate.

What else is hiding out there?

Concrete models of nominal algebra substitution Edinburgh University, Scotland, 13/6/2006. 31

