
Nominal Algebra:

a NEW mathematics of variables

Murdoch J. Gabbay, Heriot-Watt University, Scotland

LMU, Munich, Germany
Wednesday 6 December 2006

Joint work with: Mathijssen, Rota Buló, Marin

Nominal Algebra 1

Nominal algebra

It is possible to look at nominal algebra in two ways:

• Viewpoint 1. A proof-system and associated semantics which look

like universal algebra (the logic and semantics of equality) but which

admit quantifiers in a particularly intuitive manner.

• Viewpoint 2. A logic for a semantics in which names are first-class

citizens.

Let me explain.

Nominal Algebra 2

Motivation according to Viewpoint 1

• λa.t untyped λ-calculus (LAM)

• ∀a.φ first-order predicate logic (FOL)

•
∫

fda school/kindergarten

These expressions all have in common:

• Object-level variables a.

• Meta-level variables t, u, φ, or f .

• Operators (or term-formers or function-symbols) λ, ∀,
∫

.

Nominal Algebra 3

Nominal Terms

Nominal terms are a syntax inductively generated by

t ::= a | πX | [a]t | f(t, . . . , t).

Here:

• a, b, c, . . . ∈ A are atoms.

• X,Y,Z, . . . ∈ V are unknowns.

• f, g, . . . are term-formers or operators etcetera (depends on
whether we’re thinking in syntax or semantics).

• [a]t is an abstraction.

• π is a permutation. I’ll come to it later. Please ignore it for now.

Nominal Algebra 4

Nominal Algebra representations

t ::= a | πX | [a]t | f(t, . . . , t).

The a look like object-level variable symbols — the ones that get

abstracted:

• λa.t untyped λ-calculus (LAM)

• ∀a.φ first-order predicate logic (FOL)

•
∫

fda school/kindergarten

Nominal Algebra 5

Nominal Algebra representations

t ::= a | πX | [a]t | f(t, . . . , t).

Abstraction [a]t represents abstraction:

• λ[a]t untyped λ-calculus (LAM)

• ∀[a]φ first-order predicate logic (FOL)

•
∫

([a]f)d school/kindergarten

Nominal Algebra 6

Nominal Algebra representations

t ::= a | πX | [a]t | f(t, . . . , t).

‘Logical operators’ such as λ, ∀,
∫

d , and so on, are represented by

operators:

• λ[a]t untyped λ-calculus (LAM)

• ∀[a]φ first-order predicate logic (FOL)

•
∫

([a]f)d school/kindergarten

Nominal Algebra 7

Nominal Algebra representations

t ::= a | πX | [a]t | f(t, . . . , t).

X is another kind of variable, representing an unknown entity like t, u,
and φ:

• λ[a]X untyped λ-calculus (LAM)

• ∀[a]P first-order predicate logic (FOL)

•
∫
d([a]X) school/kindergarten

λ[a]X , ∀[a]X , and
∫
d([a]X) are nominal algebra terms.

(Sorry for the notational jiggery-pokery with
∫

.)

Nominal Algebra 8

λ-calculus theory LAM

Assume term-formers λ, app, and Σ. Sugar app(t, u) to tu (here t
and u range over nominal terms!). Sugar Σ([a]t, u) to t[a7→u].

Algebra is a logic of equality. Therefore assertions should take the form

t = u. A theory is a collection of assertions we call axioms.

LAM has one axiom:

(β) (λ[a]Y)X = Y [a7→X]

Nominal Algebra 9

Theory of first-order logic FOL

Bit more complex:

P ⇒ Q ⇒ P = > (P ⇒ Q) ⇒ (Q ⇒ R) ⇒ (P ⇒ R) = >

¬¬P ⇒ P = > ∀[a](P ∧ Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

⊥ ⇒ P = > a#P ` ∀[a](P ⇒ Q) ⇔ (P ⇒ ∀[a]Q) = >

T = T = > ∀[a]P ⇒ P [a7→T] = >

> ⇒ P = P U = T ∧ P [a7→T] ⇒ P [a7→U] = >

(Assume term-formers =,∀,⇒,⊥,Σ, and sugar.)

Nominal Algebra 10

Freshness assertions a#t

Read a#t as

• ‘a does not occur unabstracted in t’, or

• ‘a is fresh for t’.

There is a logic to freshness. It’s pretty straightforward:

Nominal Algebra 11

Freshness derivation rules

(#ab)
a#b

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

π-1(a)#X
(#X)

a#πX

Nominal Algebra 12

Permutations

I suppose you really want to know about π now.

Here’s one more theory. A theory of α-equivalence:

(α) b#X ⇒ [b](b a)X = [a]X.

Since b#X we can intuitively read (b a)X as ‘X[a7→b]’. Then the

rule above is the usual α-renaming rule.

We need permutation in order to rename atoms, to avoid capture etc.

Nominal Algebra 13

Permutations

It is possible to base a mathematical theory on renamings [a7→b]
instead of permutations (a b). I was doing that with Martin last year.

However invertibility loses no power and has better properties.

I.e. (a b)[a]X ≡ [b](a b)X , whereas perhaps

([a]X)[b7→a] ≡ ([a′](X[a7→a′][b7→a]) where we assume a′#X —

it’s not actually impossible, but it is more complicated.

Limited brainpower ⇒ invest it wisely.

Nominal Algebra 14

Equality derivation rules (easy)

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong)

C[t] = C[u]

a#t b#t
(perm)

(a b) · t = t

Nominal Algebra 15

For example

(#ab)
a#b

(#ab)
a#b

(perm)
[a]a = [b]b

(b a)·[b]b ≡ [a]a

b#X
(#[]a)

b#[a]X
(#[]a)

a#[a]X
(perm)

[b](b a)X = [a]X

(b a)·[a]X ≡ [b](b a)X

Here ≡ is syntactic identity.

Nominal Algebra 16

Semantics

The theories of first-order logic and of the λ-calculus permit reasoning

exactly like informal practice. See the papers [oneaah], [capasn], and

[nomsst].

When we would α-rename, we instead use a permutation. When we

would assume a 6∈ fn(φ), we instead write a#P .

Nominal Algebra 17

Semantics (Viewpoint 2)

Do not think that this is trivial.

Something very interesting has happened in Nominal Algebra: a, b, c,

. . . are populating the semantics. Yet they can also be renamed and

abstracted.

In Nominal Algebra names are first-class citizens, represented by atoms.

We can give them special properties just by imposing axioms.

For example substitution.

Nominal Algebra 18

Theory of substitution SUB

f(X1, . . . ,Xn)[a7→T] = f(X1[a7→T], . . . ,Xn[a7→T])

b#T ` ([b]X)[a7→T] = [b](X[a7→T])

a[a7→T] = T

a#X ` X[a7→T] = X

b#X ` X[a7→b] = (b a)X

Nominal Algebra 19

Picture of what we have done

• ≡ is syntactic identity [a]a 6≡ [b]b

• = (with (α)) is α-equivalence b#X ` [b](b a)X = [a]x

• =SUB is substitution b#Y ` Y [b7→X] = Y

• =LAM is αβ-equivalence (λ[a]a)b = b

• =FOL is logical equivalence (∀[a](a = a)) = >

See [oneaah,oneaah-jv,capasn,nomsst].

Some really beautiful maths (soundness, completeness, sequent rules,

cut-elimination, decidability, etc).

Nominal Algebra 20

Theory of substitution SUB (the return!!)

I’d like to discuss SUB. I think that SUB is very important.

What are the properties of names a, b, c, . . .?

• They are atomic: ‘a’ has no internal structure.

• They may be renamed and abstracted.

• They are not das Ding an sich: ‘a = b’ is just false.

Nominal algebra with (α) is a logical theory of names.

Nominal Algebra 21

Names vs. variables

What are the properties of variables x, y, z, . . .?

• They are atomic: ‘x’ has no internal structure.

• They may be renamed and abstracted.

• They may be substituted for.

• They are not das Ding an sich: ‘x = y’ may be true or false

(depending on what we substitute for them).

... and they turn up in most formal languages of note, from first-order

logic to JAVA.

Nominal algebra plus SUB is a theory of variables!

Nominal Algebra 22

Names vs. variables

So: A variable is a name with a substitution action.

And now for the punchline: let’s consider the class of all models of

SUB. Is it cartesian closed? Because if it is, then we can design

λ-calculi and thus programming-languages in which variables are

(names with a subsitution action and so are) first-class citizens of the

underlying domain.

Nominal Algebra 23

Models of substitution

A model X is:

• An underlying (nominal) set |X|.

• An interpretation function assigning to each atom a some element

|a| ∈ |X|.

• An interpretation of substitution is a map ([A]|X|) × X → X.

... validating the axioms of SUB.

Nominal Algebra 24

Models of substitution

Oops. I forgot to mention that if X is a nominal set then [A]X is the

abstraction-set, and if t ∈ X then [a]t ∈ [A]X .

[A]X has underlying (normal) set (A × X)/ ∼, where

(a, t) ∼ (a′, t′) when either

• (a, t) = (a′, t′) or

• a′#t and t′ = (a′ a)t.

Compare with (α).

Here a′#t is a semantic version of freshness judgements. Its

construction goes way back [gabbay:thesis,newaas,newaas-jv] and is

not in the scope of this talk.

Nominal Algebra 25

Models of substitution

Models of SUB are a cartesian-closed category.

Let X, Y, Z range over such models. Suppose t, t′ ∈ X, u, u′ ∈ Y,

and f ∈ X ⇒ Y.

Clearly (t, u)[a7→(t′, u′)] = (t[a7→t′], u[a7→u′]).

The problem is to define a substitution action on f a function.

a#t ` (f [a7→g])t = (ft)[a7→gt]

|a| = λ(t∈X).|a|.

Very simple. Arguably, very powerful.

Nominal Algebra 26

Lambda-abstraction, as a function

abstract ∈ X → A → X → X is defined by

abstract(t, a) = λt′.t[a7→t′].

abstract is a function that takes an argument and a name and

λ-abstracts that name in its argument.

Nominal Algebra 27

Contexts, as functions

Any C ∈ X → X behaves very much like C in C[t], since C may bind

in its argument.

It’s a particularly general notion of context though: abstract could be

written as λ-.-.

Nominal Algebra 28

Access to names

We have full access to names. For example we can write the freshness

test # as a function f such that:

• ft = 0 if a#t.

• ft = 1 if ¬(a#t).

(Assuming two ‘normal’ elements 0, 1 ∈ |X|.

This is not possible in the λ-calculus: fx and fy may differ, but not

because x is called ‘x’. Likewise ft may differ from ft′, but not

because fn(t) 6= fn(t′).

Names in this category are like variables (they can be abstracted) but

they behave a little bit like pointers too.

Nominal Algebra 29

Conclusion

Nominal algebra is a logic in which names are first-class citizens. It

permits reasoning in a very intuitive style on languages with binding,

such as FOL and the λ-calculus. Freshness, permutations, a, and X
correspond to fn, α-renaming, x, and t/φ.

This also inspired mathematics of independent interest.

One example is a (nominal) algebraic characterisation of variable as

name+substitution.

I am excited about the implications for designing programming

languages.

Thank you very much for listening.

Nominal Algebra 30

