Nominal Algebra:
a NEW mathematics of variables

Murdoch J. Gabbay, Heriot-Watt University, Scotland

LMU, Munich, Germany
Wednesday 6 December 2006

Joint work with: Mathijssen, Rota Bulo, Marin

Nominal Algebra

Nominal algebra

It is possible to look at nominal algebra in two ways:

e Viewpoint 1. A proof-system and associated semantics which look
like universal algebra (the logic and semantics of equality) but which
admit quantifiers in a particularly intuitive manner.

e Viewpoint 2. A logic for a semantics in which names are first-class
citizens.

Let me explain.

Nominal Algebra

Motivation according to Viewpoint 1

o \a.t untyped A-calculus (LAM)
o Va.¢ first-order predicate logic (FOL)
o [fda school/kindergarten

These expressions all have in common:
e Object-level variables a.
e Meta-level variables ¢, u, ¢, or f.

e Operators (or term-formers or function-symbols) A, V, f

Nominal Algebra

Nominal Terms

Nominal terms are a syntax inductively generated by
to=a|nX ||a]t|f(t,... 7).
Here:
e a,b,c,... € A are atoms.

o X.Y Z ...€ YV areunknowns.

e f, g, ...areterm-formers or operators etcetera (depends on
whether we’re thinking in syntax or semantics).

e |altis an abstraction.

e 7 is apermutation. I'll come to it later. Please ignore it for now.

Nominal Algebra

Nominal Algebra representations

tu=a|nX ||alt]|f(t,...,1).

The a look like object-level variable symbols — the ones that get
abstracted:

o \u.t untyped A-calculus (LAM)
o Va.¢ first-order predicate logic (FOL)
o [fda school/kindergarten

Nominal Algebra

Nominal Algebra representations

tu=a|7nX |l|alt]|f(t,...,1).

Abstraction |a|t represents abstraction:

o \at untyped A-calculus (LAM)
o Vialo first-order predicate logic (FOL)
o [([a]f)d school/kindergarten

Nominal Algebra

Nominal Algebra representations

tu=a|7nX |l|alt]|f(t,...,1).

‘Logical operators’ such as A\, V, f d, and so on, are represented by
operators:

e \alt untyped \-calculus (LAM)
e Vialo first-order predicate logic (FOL)
o [([a]f)d school/kindergarten

Nominal Algebra

Nominal Algebra representations

tu=a|mX |l|alt]|f(t,...,1).

X is another kind of variable, representing an unknown entity like ¢, w,
and ¢:

o \a]X untyped A-calculus (LAM)
e Via|P first-order predicate logic (FOL)
o [d([a]X) school/kindergarten

Aa) X, V[a] X, and [d([a]X) are nominal algebra terms.
(Sorry for the notational jiggery-pokery with f.)

Nominal Algebra

A-calculus theory LAM

Assume term-formers A, app, and 3. Sugar app(t, u) to tu (here t
and u range over nominal terms!). Sugar > ([a]t, u) to t{ar—u).

Algebra is a logic of equality. Therefore assertions should take the form
t = u. A theory is a collection of assertions we call axioms.

LAM has one axiom:

(8) (Ala]Y) X = Yla—X]

Nominal Algebra

Theory of first-order logic FOL

Bit more complex:

P=Q=P=T (P=Q)=(Q=R)=(P=R)
=P =P =T Via|(P A Q) < V|a|P AV]alQ
l=P =T a#P FVa(P=Q)< (P=VdQ)
T=T-=T V[a]P = Pla—T]
T=P=P U=TA Pla—T]| = Pla—U]

(Assume term-formers =, V, =-, L, >3, and sugar.)

Nominal Algebra

+H 4 4+ A

10

Freshness assertions a7t

Read a#t as
® ‘a does not occur unabstracted in t’, or
® ‘ais fresh for t'.

There is a logic to freshness. It's pretty straightforward:

Nominal Algebra

11

Freshness derivation rules

Nominal Algebra

12

Permutations

| suppose you really want to know about 7t now.

Here’s one more theory. A theory of c-equivalence:
() b#X = [b](ba)X = [a] X.

Since b# X we can intuitively read (b a) X as ‘X [ar—b]|". Then the
rule above is the usual «v-renaming rule.

We need permutation in order to rename atoms, to avoid capture etc.

Nominal Algebra

13

Permutations

It is possible to base a mathematical theory on renamings |a—b|
instead of permutations (a b). | was doing that with Martin last year.

However invertibility loses no power and has better properties.

l.e. (ab)la|X = [b](a b)X, whereas perhaps
(la]X)[b—a] = (|a']|(X|ar—a']|[b—a]) where we assume a’'# X —
It’s not actually impossible, but it is more complicated.

Limited brainpower = invest it wisely.

Nominal Algebra

14

Equality derivation rules (easy)

_ (refl) o (symm) ez (tran)
- u==t =V
— b
i (cong) Gt Ot (perm)

Nominal Algebra

15

For example

a—#b (#ab) a—#b E#ab) |
da=[p
bt X
biElal X (#l]a) X (i]:;
bl(ba)X = la]X

Here = is syntactic identity.

The theories of first-order logic and of the A-calculus permit reasoning
like informal practice. See the papers [oneaah], [capasn], and
[nomsst].

When we would a-rename, we instead use a permutation. When we
would assume a & fn(¢), we instead write a# P.

Nominal Algebra

17

Do not think that this is trivial.

Something very interesting has happened in Nominal Algebra: a, b, c,
... are populating the semantics. Yet they can also be renamed and
abstracted.

In Nominal Algebra names are first-class citizens, represented by atoms.
We can give them special properties just by imposing axioms.

For example substitution.

Nominal Algebra 18

Theory of substitution SUB

(X1, .. X)) a—T] = f(X;]a—T],. ..

b#T + ([b| X)|a—T] = [b](X|a—T])
ala—T| =T
a#X F X|a—T| =X

b X - X|arb] = (ba)X

Nominal Algebra

, Xpla—T))

19

e = is syntactic identity lala # [b]b
e — (with ()) is c-equivalence b#X F [bl(ba)X = |alz
® —gR IS substitution b#Y F Y b—X| =Y
e — M is a3-equivalence (AMala)b =10
e —rQ. is logical equivalence (Val(a =a)) =T

See [oneaah,oneaah-jv,capasn,nomsst].

Some really beautiful maths (soundness, completeness, sequent rules,
cut-elimination, decidability, etc).

Nominal Algebra 20

Theory of substitution SUB (the return!!)

I'd like to discuss SUB. I think that SUB is very important.

What are the properties of names a, b, c, .. .?
e They are atomic: ‘a’ has no internal structure.
e They may be renamed and abstracted.
e They are not das Ding an sich: ‘a = b’ is just false.

Nominal algebra with () is a logical theory of names.

Nominal Algebra

21

Names vs. variables

What are the properties of variables x, vy, z, .. .?
e They are atomic: ‘x’ has no internal structure.
e They may be renamed and abstracted.
e They may be substituted for.

e They are not das Ding an sich: ‘x = ¥’ may be true or false
(depending on what we substitute for them).

... .and they turn up in most formal languages of note, from first-order
logic to JAVA.

Nominal algebra plus SUB is a theory of variables!

Nominal Algebra

22

Names vs. variables

So: A variable is a name with a substitution action.

And now for the punchline: let’s consider the class of all models of
SUB. Is it cartesian closed? Because if it is, then we can design
A-calculi and thus programming-languages in which variables are
(names with a subsitution action and so are) first-class citizens of the
underlying domain.

Nominal Algebra

23

Models of substitution

A model X is:
e An underlying (nominal) set |X]|.

e An interpretation function assigning to each atom a some element

lal & [X].
e An interpretation of substitution is a map (|A]|X]|) x X — X,

.. validating the axioms of SUB.

Nominal Algebra

24

Models of substitution

Oops. | forgot to mention that if X is a nominal set then [A] X is the
abstraction-set, and if t € X then |a|t € [A]X.

|A] X has underlying (normal) set (A x X)/ ~, where
(a,t) ~ (a’,t") when either

e (a,t)=(a',t')or
e o'#tandt' = (a’ a)t.
Compare with ().

Here a’#t is a semantic version of freshness judgements. Its
construction goes way back [gabbay:thesis,newaas,newaas-jv] and is
not in the scope of this talk.

Nominal Algebra 25

Models of substitution

Models of SUB are a cartesian-closed category.

Let X, Y, Z range over such models. Suppose t,t' € X, u,u’ €Y,
and f € X =Y.

Clearly (t,u)|a—(t',u")| = (tla—t'], ula—u']).

The problem is to define a substitution action on f a function.

aztt B (fla—g))t = (ft)|a—gt]
a| = A(teX).lal.

Very simple. Arguably, very powerful.

Nominal Algebra

26

Lambda-abstraction, as a function

abstract € X — A — X — Xis defined by
abstract(t,a) = At'.t[la—t'].

abstract is a function that takes an argument and a name and
A-abstracts that name in its argument.

Nominal Algebra

27

Contexts, as functions

Any C' € X — X behaves very much like C'in C'[t], since C' may bind
In its argument.

It's a particularly general notion of context though: abstract could be
written as A-.-.

Nominal Algebra

28

We have full access to names. For example we can write the
as a function f such that:

o ft=0ifattt.
o ft=1if(aft).
(Assuming two ‘normal’ elements 0, 1 € |X].

This is not possible in the A-calculus: fx and fvy may differ, but

because x is called ‘2’. Likewise ft may differ from ft’, but
because fn(t) £ fn(t’).

Names in this category are like variables (they can be abstracted) but
they behave a little bit like pointers too.

Nominal Algebra

29

Nominal algebra is a logic in which names are first-class citizens. It
permits reasoning in a Intuitive style on languages with binding,
such as FOL and the A-calculus. Freshness, permutations, @, and X
correspond to fn, a-renaming, x, and /.

This also inspired mathematics of independent interest.

example is a (nominal) algebraic characterisation of variable as
name-+substitution.

| am excited about the implications for designing programming
languages.

Thank you very much for listening.

Nominal Algebra 30

