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This talk. . .

. . . is the first in a series of about four talks I plan to give in the

framework of a mini-course describing (some? most?) of the

mathematics I’ve done over the past six years (since I got my PhD).

Thank you to all of you for coming, and a special thank-you to those who

arrived from out of town. I appreciate the interest!
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Motivation

In this talk I’ll motivate, present, and discuss Nominal Algebra. Thanks

to Anna for the conversation on which the structure of this talk is based.
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Motivation

Let’s look at some things we often write:
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Motivation

• λa.t untyped λ-calculus (LAM)

• ∀a.φ first-order predicate logic (FOL)

•
∫

fda school/kindergarten

• φ[a7→t] FOL (detail of ∀-rule)

• u[a7→t] LAM (detail of β-rule)

These expressions all have in common:

• An object-level variable a.

• Meta-level variable symbols such as t, u, φ, or f .
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(The detail)

Γ, φ[a7→t] ` ψ
(∀L)

Γ,∀a.φ ` ψ

(λa.u)t→ u[a7→t] (β).
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Motivation

Let’s build a logic which explicitly represents this (and in which LAM,

FOL, and similar systems, are object-theories).

Let’s make the logic an algebra (for simplicity).

Let’s call it Nominal Algebra.
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Nominal Terms

Nominal terms are a syntax inductively generated by

t ::= a | πX | [a]t | f(t, . . . , t).

Here:

• We fix a, b, c, . . . ∈ A a countably infinite set of atoms.

• We fix X,Y,Z, . . . ∈ V a countably infinite set of unknowns

(disjoint from the atoms; everything’s disjoint).

• We fix f, g, . . . some term-formers.

• Call [a]t an abstraction.
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Nominal Terms

t ::= a | πX | [a]t | f(t, . . . , t).

π is a permutation. A permutation is a finitely supported bijection on A.

Finitely supported means:

π(a) = a for all a ∈ A except for a finite set of atoms.
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Nominal Terms

For example permutations are:

(a b c) and Id

(a to b to c to a, and the identity function). Permutations are not:

(a1 a2)(a3 a4) . . .

for A = {a1, a2, . . .}.
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Questions

t ::= a | πX | [a]t | f(t, . . . , t).

Q. Why the a? Are they like variable symbols?

A. They represent object-level variable symbols.

• λa.t untyped λ-calculus (LAM)

• ∀a.φ first-order predicate logic (FOL)

•
R

fda school/kindergarten

• φ[a7→t] FOL (detail of ∀-rule)

• u[a 7→t] LAM (detail of β-rule)
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Questions

t ::= a | πX | [a]t | f(t, . . . , t).

Q. What is abstraction [a]t?

A. This represents abstract a in t.

• λ[a]t untyped λ-calculus (LAM)

• ∀[a]φ first-order predicate logic (FOL)

•
R

[a]fd school/kindergarten

• ([a]φ)[7→t] FOL (detail of ∀-rule)

• ([a]u)[7→t] LAM (detail of β-rule)
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Questions

t ::= a | πX | [a]t | f(t, . . . , t).

λ, ∀,
∫

d , and [7→] are represented by unary, unary, unary, and binary

term-formers.

• λ[a]t untyped λ-calculus (LAM)

• ∀[a]φ first-order predicate logic (FOL)

•
R

[a]fd school/kindergarten

• Σ([a]φ, t) FOL (detail of ∀-rule)

• Σ([a]u, t) LAM (detail of β-rule)
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Questions

t ::= a | πX | [a]t | f(t, . . . , t).

t, u, and φ, in the box of the previous slide are represented by

unknowns in the syntax above; use capital letters for unknowns. Write

u[a7→t] for Σ([a]u, t).

• λ[a]X untyped λ-calculus (LAM)

• ∀[a]P first-order predicate logic (FOL)

•
R

[a]Xd school/kindergarten

• P [a7→T ] FOL (detail of ∀-rule)

• U [a7→T ] LAM (detail of β-rule)
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Internalising

We have internalised part of the meta-level. We can still use a

meta-level if we like, i.e. we can still let t vary over unknown terms, but

now terms are enriched with X which in the syntax represents an

unknown term, as well as with [a]X which in the syntax represents

‘abstract a in X ’.

• Object-level variables are modelled by atoms a.

• Meta-level unknowns are modelled by unknowns X .
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Equality assertions t = u

We’re doing algebra, so introduce a judgement for t = u, which judges

whether the terms t and u are equal.

We called [-]- abstraction.

So intuitively we expect [a]a = [b]b to hold — they are not identical

syntax, but they are equal. Similarly for [a]c = [b]c. But [a]a 6= [b]a.

And so on.
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Complications

But we lose naı̈ve α-equivalence. For example

[a]X = [b]X

ceases to hold, even though a and b are not in X , because the

meaning of X is an ‘unknown’, and we do not know whether X

mentions a or b! If we instantiate X to a, b, and c, we get respectively

[a]a 6= [b]a [a]b 6= [b]b [a]c = [b]c.

Note also we must introduce Σ([a]Y,X) (sugared to Y [a7→X])
because Y and X represent unknown terms, and ‘until we know what

they are’ we have no way to carry out the substitution.
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Freshness assertions a#t

Read a#X as ‘a does not occur in X ’, or ‘a is fresh for X ’.

Then we can characterise α-equivalence as:

b#X ⇒ [b](b a)X = [a]X.

For the moment I’m just telling you that this is the case.

Call a pair a#t a freshness assertion. If t ≡ X call it primitive.

Nominal algebra with applications TAU, Israel, 4/5/2006. 18



Freshness derivation rules (formally)

(#ab)
a#b

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

π-1(a)#X
(#X)

a#πX
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Core equality derivation rules (formally)

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong)

C[t] = C[u]

a#t b#t
(perm)

(a b) · t = t
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For example

(#ab)
a#b

(#ab)
a#b

(perm)
[a]a = [b]b

(b a) · [b]b ≡ [a]a

b#X
(#[]a)

b#[a]X
(#[]a)

a#[a]X
(perm)

[b](b a)X = [a]X

(b a) · [a]X ≡ [b](b a)X

Here ≡ is syntactic identity.
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Axioms

A freshness context ∆ is a finite set of primitive freshness assertions.

An axiom ∆ ` t = u is a pair of a freshness context and an equality

assertion. If ∆ is empty write it just t = u.

We can use axioms to enrich provable equality, which currently stands

at some generalisation of α-equivalence.
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Theory of λ-calculus LAM

(λ[a]Y )X = Y [a7→X].

(Assume suitable term-formers λ, app and sugar.)

As an axiom, we instantiate Y and X to ‘any term’ when we enrich

equality, generating a family of equalities for each instantiation (and

each context). Thus, Y and X do represent ‘any term’, with universal

quantification at top level. Instantiation is direct replacement of an

unknown by a term (no capture avoidance).
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Theory of first-order logic FOL

P ⇒ Q⇒ P = > (P ⇒ Q) ⇒ (Q⇒ R) ⇒ (P ⇒ R) = >

¬¬P ⇒ P = > ∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

⊥ ⇒ P = > a#P ` ∀[a](P ⇒ Q) ⇔ (P ⇒ ∀[a]Q) = >

T ≈ T = > ∀[a]P ⇒ P [a7→T ] = >

U ≈ T ∧ P [a7→T ] ⇒ P [a7→U ] = >

(Assume suitable term-formers ≈,∀,⇒,⊥ and sugar.)

The ‘= >’ bit just converts a predicate into a judgement.
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But wait. . .

Remember that substitution is a term-former.
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Theory of substitution SUB

f(X1, . . . ,Xn)[a7→T ] = f(X1[a7→T ], . . . ,Xn[a7→T ])

b#T ` ([b]X)[a7→T ] = [b](X[a7→T ])

a[a7→T ] = T

a#X ` X[a7→T ] = X

b#X ` X[a7→b] = (b a)X
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Picture of what we have done

• ≡ is syntactic identity [a]a 6≡ [b]b

• = (no axioms) is α-equivalence b#X ` [b](b a)X = [a]x

• =SUB is substitution b#Y ` Y [b7→X] = Y

• =LAM is αβ-equivalence (λ[a]a)b = b

• =FOL is logical equivalence (∀[a](a ≈ a)) = >

There is much to say about all of these theories. In another talk I will

discuss SUB.
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We concentrate on FOL. . .

. . . in the rest of this talk. We build/specify FOL on top of SUB, so that

as far as it is concerned, substitution (and α-equivalence) are structural

properties of formulae.

That formulae may contain explicit ‘unknown formulae’ is no more (or

less!) relevant to the system, than it is to us when we write ∀a.φ.
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Nominal algebra theories

This system can make formal assertions about unknown formulae and

relations between them, in the syntax itself, because we have the syntax

to do it; X , Y , Z .

This means we get extra: not only first-order logic but

one-and-a-halfth-order logic, which is first-order logic whose syntax is

enriched with first-class formula unknowns.

The treatment of binding is significantly different from that of

second-order logic.

Remember: once we have built something in a framework (Nominal

Algebra), we can throw away the framework. That’s what we do next.
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Recall FOL

P ⇒ Q⇒ P = > (P ⇒ Q) ⇒ (Q⇒ R) ⇒ (P ⇒ R) = >

¬¬P ⇒ P = > ∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

⊥ ⇒ P = > a#P ` ∀[a](P ⇒ Q) ⇔ P ⇒ ∀[a]Q = >

T ≈ T = > ∀[a]P ⇒ P [a7→T ] = >

U ≈ T ∧ P [a7→T ] ⇒ P [a7→U ] = >

Soon we’ll have a sequent system corresponding to this particular

Nominal Algebra theory.
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Recall: First-Order Logic (FOL)

Fix countably infinitely many variable symbols a, b, c, . . .. Let terms be:

t ::= a

Formulae or predicates are:

φ ::= ⊥ | φ⇒ φ | ∀a.φ | t ≈ t′.

Write ≡ for syntactic identity.
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Derivation

A context Φ and cocontext Ψ are finite and possibly empty sets of
formulae. A judgement is a pair Φ ` Ψ. Valid judgements:

(Axiom)
φ, Φ ` Ψ, φ

(⊥L)
⊥, Φ ` Ψ

(⇒R)
φ, Φ ` Ψ, ψ

Φ ` Ψ, φ⇒ ψ
(⇒L)

Φ ` Ψ, φ ψ, Φ ` Ψ

φ⇒ ψ, Φ ` Ψ

(∀R)
Φ ` Ψ, ψ

Φ ` Ψ, ∀a.ψ
a fresh for Φ,Ψ (∀L)

φ[a7→t], Φ ` Ψ

∀a.φ, Φ ` Ψ
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Hang on a moment

What are φ and ψ?

Meta-variables ranging over formulae.

What are t and a?

Meta-variables ranging over terms and variable symbols.

What is φ[a7→t]?

A meta-level operation defined given real predicate, variable symbol,

and term.

What is ‘a fresh for Φ and Ψ’?

A meta-level condition defined given a real context and cocontext.
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Schema

Quite a lot of things happen in the meta-level in First-Order Logic (FOL).
For example

` ∀a.∀b.φ⇔ ∀b.∀a.φ

is derivable for every value of the meta-variable φ:

(Axiom)
φ ` φ

(∀L)
∀b.φ ` φ

(∀L)
∀a.∀b.φ ` φ

(∀R)
∀a.∀b.φ ` ∀a.φ

(∀R)
∀a.∀b.φ ` ∀b.∀a.φ
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Schema

However, the fact that this happens for all φ cannot be expressed in

FOL.

Some nice example theorems:

• If t ≈ t′ then φ[a7→t] ⇔ φ[a7→t′].

• If a 6∈ fv(φ) then ` (∀a.φ) ⇔ φ.

• ∀a.∀b.φ if and only if ∀b.∀a.φ.
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Second/Higher-order logic

In Higher-Order Logic (HOL), propositions have a type o and ∀σ is a

constant with type (σ → o) → o, write just ∀ or ∀ : (σ → o) → o.

Then the single sequent

` ∀λf.
(

∀λa.∀λb.fab⇔ ∀λb.∀λa.fab
)

expresses that

` ∀a.∀b.φ⇔ ∀b.∀a.φ

holds for all φ.

Here f has function type. If a : σ and b : τ then f : σ → τ → o and

‘fab is φ’.
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Second/Higher-order logic

Similarly:

• ‘If t ≈ t′ then φ[a7→t] ⇔ φ[a7→t′]’ becomes

t ≈ t′ ` ∀λf.
(

ft⇔ ft′
)

.

in HOL.

Note the types: f has function type and if t : σ then f : σ → o

and ∀ : ((σ → o) → o) → o.

• ‘If a 6∈ fv(φ) then ` ∀a.φ⇔ φ’ is not expressible in HOL.
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Schema

One-and-a-halfth order logic addresses these problems in a different

way.

Take term-formers ≈, ∀, ⇒, and ⊥.
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Sugar and example terms

Write ¬φ for φ⇒ ⊥, write φ ∧ φ′ for ¬(φ⇒ ¬φ′), write φ⇔ φ′ for

(φ⇒ φ′) ∧ (φ′ ⇒ φ), write φ ∨ φ′ for (¬φ) ⇒ φ′, write > for

⊥ ⇒ ⊥.

• ∀[a]∀[b]X ⇔ ∀[b]∀[a]X .

• T ≈ T ′.

• X[a7→T ] ⇔ X[a7→T ′].

• ∀[a]X ⇔ X .
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Sequent derivation rules

(Axiom)
φ, Φ ∆̀ Ψ, φ

(⊥L)
⊥, Φ ∆̀ Ψ

Φ ∆̀ Ψ, φ ψ, Φ ∆̀ Ψ
(⇒L)

φ⇒ ψ, Φ ∆̀ Ψ

φ, Φ ∆̀ Ψ, ψ
(⇒R)

Φ ∆̀ Ψ, φ⇒ ψ

φ′, Φ ∆̀ Ψ ∆ S̀UB φ
′ = φ[a7→t]

(∀L)
∀[a]φ, Φ ∆̀ Ψ

Φ ∆̀ Ψ, ψ ∆ ` a#Φ,Ψ
(∀R)

Φ ∆̀ Ψ, ∀[a]ψ
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Em. . . just a few more sequent derivation rules

(≈R)
Φ ` Ψ, t ≈ t

φ′, Φ ` Ψ ∆ S̀UB φ
′ = φ′′[a7→t′] ∆ S̀UB φ = φ′′[a7→t]

(≈L)
t′≈t, φ, Φ ∆̀ Ψ

φ′, Φ ∆̀ Ψ ∆ S̀UB φ
′ = φ

(StructL)
φ, Φ ∆̀ Ψ

Φ ∆̀ Ψ, ψ′ ∆ S̀UB ψ
′ = ψ

(StructR)
Φ ∆̀ Ψ, ψ
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Example derivations

∀[a]∀[b]X ` X a#∀[b]X
(∀R)

∀[a]∀[b]X ` ∀[a]X b#∀[a]∀[b]X
(∀R)

∀[a]∀[b]X ` ∀[b]∀[a]X

(Axiom)
X ` X S̀UB X = X[b7→b]

(∀L)
∀[b]X ` X S̀UB ∀[b]X = (∀[b]X)[a7→a]

(∀L)
∀[a]∀[b]X ` X

Semantics in FOL: “For all φ and ψ, ∀a.∀b.φ ` ∀b.∀a.ψ.”
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Freshness part of the derivation

(#[]a)
b#[b]X

(#f)
b#∀[b]X

(#[]a)
b#[a]∀[b]X

(#f)
b#∀[a]∀[b]X
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Another example derivation

(Axiom)
X[a7→T ′] ` X[a7→T ′]

S̀UB X[a7→a][a7→T ′] = X[a7→T ′],

S̀UB X[a7→a][a7→T ] = X[a7→T ]
(≈L)

T ′ ≈ T, X[a7→T ] ` X[a7→T ′]

Semantics in FOL:

“For all t and t′ and φ, t′ ≈ t, φ[a7→t] ` φ[a7→t′].”
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One more example derivation

(Axiom)
X à#X X a#X ` a#X

(∀R)
X à#X ∀[a]X

Semantics in FOL:

“For all φ and a, if a 6∈ fv(φ) then φ ` ∀a.φ.”
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A nice theorem:

Φ ∆̀ Ψ, φ φ, Φ ∆̀ Ψ
(Cut)

Φ ∆̀ Ψ

Theorem (cut-elimination): Cut is eliminable.

The cut-elimination procedure is almost standard — but this is

cut-elimination in the presence of unknown formulae.

Since the cut-elimination procedure is normally written parametrically

over those formulae, this is no surprise really. However, the meta-level

reasoning about substitution and α-equivalence is now all completely

explicit on the nominal terms.
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Another nice theorem:

Say a nominal term is closed when it mentions no unknowns. So a is

closed but X is not.

Theorem: First-order logic (and its derivations) correspond to sequents

of closed terms (and their derivations); term-for-term up to S̀UB , and

proof-rule by proof-rule (up to (Struct)).
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Publicity for `SUB

(next talk, probably)

Write t `SUB

∆ u when t = u is derivable from assumptions ∆ using the
following axioms:

(f 7→) f(u1, . . . , un)[a7→t] = f(u1[a7→t], . . . , un[a7→t])

([b]7→) b#t⇒ ([b]u)[a7→t] = [b](u[a7→t])

(var 7→) a[a7→t] = t

(u7→) a#u⇒ u[a7→t] = u

(ren7→) b#u⇒ u[a7→b] = (b a) · u

(perm) a, b#t⇒ (a b) · t = t
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SUB

What is the theory of substitution? Is it decidable? What are its models?

How do we know we have the right axioms?
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Permutation action

π · a ≡ π(a) π · (π′X) ≡ (π ◦ π′)X

π · [a]t ≡ [π(a)](πt)

π · f(t1, . . . , tn) ≡ f(πt1, . . . , πtn)
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Relation to HOL

Not direct since we can express a#t and HOL cannot.

Also, suppose X : o and t : T. Then X[a7→t] corresponds to ft in

HOL where f : T → o. However, X[a7→t][a′ 7→t′] corresponds to

f ′tt′ where f ′ : T → T → o. SimilarlyX[a7→t][a′ 7→t′][a′′ 7→t′′]. . .

This is type raising.

In one-and-a-halfth-order logic, X remains at sort o throughout and the

universal quantification implicit in the use of X allows arbitrary numbers

of substitutions.
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Relation to HOL

One-and-a-halfth-order logic is not fully higher-order. We can write

X ` Y

meaning in FOL “For all formulae φ and ψ, φ ` ψ.”

In HOL we can write this as ` ∀φ, ψ.φ⇒ ψ.

However we can also write ` ∀ψ.
(

(∀φ.φ) ⇒ ψ
)

.

This is not possible in one-and-a-halfth-order logic: (∀[X]X) ` Y is

not syntax.
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Conclusions

Nominal Algebra enriches algebra with object-level variable symbols

(atoms) with primitive facilities for abstraction and α-renaming ([a]t,
πX , a#X).

We can use this theory of axiomatise systems with binding, like

first-order logic.

We thus get a formal framework for defining logics (and calculi).
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Conclusions

Once your theory is specified, you can throw out the framework and just

keep the theory . . .

. . . with nominal algebra providing now a semantics, e.g. the sequent

system for one-and-a-halfth-order logic has a sound and complete

semantics in FOL, with

Φ ∆̀ Ψ translating to ∆ ` (Φ∧ ⇒ Ψ∨) = >.

(∧ means ‘put ∧ between the elements of Φ’, similarly for ∨).
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Conclusions

We get extra. E.g. one-and-a-halfth order logic was intended to be

first-order logic, then we noticed that we had predicate unknowns; thus

enabling us to reason universally on predicates in a new way.

This really is new, because a#X is not expressible using other

techniques (to our knowledge); not in full generality for a completely

unkown X .
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Conclusions

For some further work, how about. . .

• Two-and-a-halfth-order logic (where you can abstract X)?

• Implementation and automation?

• Semantics (aside from in FOL)?

• Axiomatisations of other logics. Remember: we can always build an

‘onion’ and delegate structural matters such as =SUB to structural

rules. We can do this even in the presence of unknowns. That is the

point:

Structure and abstraction in the presence of first-class unknowns.
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