
Nominal algebra with applications

Murdoch J Gabbay

Tel-Aviv University, Israel 4/5/2006

Thanks to Nachum Dershowitz and Arnon Avron

Nominal algebra with applications TAU, Israel, 4/5/2006. 1

This talk. . .

. . . is the first in a series of about four talks I plan to give in the

framework of a mini-course describing (some? most?) of the

mathematics I’ve done over the past six years (since I got my PhD).

Thank you to all of you for coming, and a special thank-you to those who

arrived from out of town. I appreciate the interest!

Nominal algebra with applications TAU, Israel, 4/5/2006. 2

Motivation

In this talk I’ll motivate, present, and discuss Nominal Algebra. Thanks

to Anna for the conversation on which the structure of this talk is based.

Nominal algebra with applications TAU, Israel, 4/5/2006. 3

Motivation

Let’s look at some things we often write:

Nominal algebra with applications TAU, Israel, 4/5/2006. 4

Motivation

• λa.t untyped λ-calculus (LAM)

• ∀a.φ first-order predicate logic (FOL)

•
∫

fda school/kindergarten

• φ[a7→t] FOL (detail of ∀-rule)

• u[a7→t] LAM (detail of β-rule)

These expressions all have in common:

• An object-level variable a.

• Meta-level variable symbols such as t, u, φ, or f .

Nominal algebra with applications TAU, Israel, 4/5/2006. 5

(The detail)

Γ, φ[a7→t] ` ψ
(∀L)

Γ,∀a.φ ` ψ

(λa.u)t→ u[a7→t] (β).

Nominal algebra with applications TAU, Israel, 4/5/2006. 6

Motivation

Let’s build a logic which explicitly represents this (and in which LAM,

FOL, and similar systems, are object-theories).

Let’s make the logic an algebra (for simplicity).

Let’s call it Nominal Algebra.

Nominal algebra with applications TAU, Israel, 4/5/2006. 7

Nominal Terms

Nominal terms are a syntax inductively generated by

t ::= a | πX | [a]t | f(t, . . . , t).

Here:

• We fix a, b, c, . . . ∈ A a countably infinite set of atoms.

• We fix X,Y,Z, . . . ∈ V a countably infinite set of unknowns

(disjoint from the atoms; everything’s disjoint).

• We fix f, g, . . . some term-formers.

• Call [a]t an abstraction.

Nominal algebra with applications TAU, Israel, 4/5/2006. 8

Nominal Terms

t ::= a | πX | [a]t | f(t, . . . , t).

π is a permutation. A permutation is a finitely supported bijection on A.

Finitely supported means:

π(a) = a for all a ∈ A except for a finite set of atoms.

Nominal algebra with applications TAU, Israel, 4/5/2006. 9

Nominal Terms

For example permutations are:

(a b c) and Id

(a to b to c to a, and the identity function). Permutations are not:

(a1 a2)(a3 a4) . . .

for A = {a1, a2, . . .}.

Nominal algebra with applications TAU, Israel, 4/5/2006. 10

Questions

t ::= a | πX | [a]t | f(t, . . . , t).

Q. Why the a? Are they like variable symbols?

A. They represent object-level variable symbols.

• λa.t untyped λ-calculus (LAM)

• ∀a.φ first-order predicate logic (FOL)

•
R

fda school/kindergarten

• φ[a7→t] FOL (detail of ∀-rule)

• u[a 7→t] LAM (detail of β-rule)

Nominal algebra with applications TAU, Israel, 4/5/2006. 11

Questions

t ::= a | πX | [a]t | f(t, . . . , t).

Q. What is abstraction [a]t?

A. This represents abstract a in t.

• λ[a]t untyped λ-calculus (LAM)

• ∀[a]φ first-order predicate logic (FOL)

•
R

[a]fd school/kindergarten

• ([a]φ)[7→t] FOL (detail of ∀-rule)

• ([a]u)[7→t] LAM (detail of β-rule)

Nominal algebra with applications TAU, Israel, 4/5/2006. 12

Questions

t ::= a | πX | [a]t | f(t, . . . , t).

λ, ∀,
∫

d , and [7→] are represented by unary, unary, unary, and binary

term-formers.

• λ[a]t untyped λ-calculus (LAM)

• ∀[a]φ first-order predicate logic (FOL)

•
R

[a]fd school/kindergarten

• Σ([a]φ, t) FOL (detail of ∀-rule)

• Σ([a]u, t) LAM (detail of β-rule)

Nominal algebra with applications TAU, Israel, 4/5/2006. 13

Questions

t ::= a | πX | [a]t | f(t, . . . , t).

t, u, and φ, in the box of the previous slide are represented by

unknowns in the syntax above; use capital letters for unknowns. Write

u[a7→t] for Σ([a]u, t).

• λ[a]X untyped λ-calculus (LAM)

• ∀[a]P first-order predicate logic (FOL)

•
R

[a]Xd school/kindergarten

• P [a7→T] FOL (detail of ∀-rule)

• U [a7→T] LAM (detail of β-rule)

Nominal algebra with applications TAU, Israel, 4/5/2006. 14

Internalising

We have internalised part of the meta-level. We can still use a

meta-level if we like, i.e. we can still let t vary over unknown terms, but

now terms are enriched with X which in the syntax represents an

unknown term, as well as with [a]X which in the syntax represents

‘abstract a in X ’.

• Object-level variables are modelled by atoms a.

• Meta-level unknowns are modelled by unknowns X .

Nominal algebra with applications TAU, Israel, 4/5/2006. 15

Equality assertions t = u

We’re doing algebra, so introduce a judgement for t = u, which judges

whether the terms t and u are equal.

We called [-]- abstraction.

So intuitively we expect [a]a = [b]b to hold — they are not identical

syntax, but they are equal. Similarly for [a]c = [b]c. But [a]a 6= [b]a.

And so on.

Nominal algebra with applications TAU, Israel, 4/5/2006. 16

Complications

But we lose naı̈ve α-equivalence. For example

[a]X = [b]X

ceases to hold, even though a and b are not in X , because the

meaning of X is an ‘unknown’, and we do not know whether X

mentions a or b! If we instantiate X to a, b, and c, we get respectively

[a]a 6= [b]a [a]b 6= [b]b [a]c = [b]c.

Note also we must introduce Σ([a]Y,X) (sugared to Y [a7→X])
because Y and X represent unknown terms, and ‘until we know what

they are’ we have no way to carry out the substitution.

Nominal algebra with applications TAU, Israel, 4/5/2006. 17

Freshness assertions a#t

Read a#X as ‘a does not occur in X ’, or ‘a is fresh for X ’.

Then we can characterise α-equivalence as:

b#X ⇒ [b](b a)X = [a]X.

For the moment I’m just telling you that this is the case.

Call a pair a#t a freshness assertion. If t ≡ X call it primitive.

Nominal algebra with applications TAU, Israel, 4/5/2006. 18

Freshness derivation rules (formally)

(#ab)
a#b

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

π-1(a)#X
(#X)

a#πX

Nominal algebra with applications TAU, Israel, 4/5/2006. 19

Core equality derivation rules (formally)

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong)

C[t] = C[u]

a#t b#t
(perm)

(a b) · t = t

Nominal algebra with applications TAU, Israel, 4/5/2006. 20

For example

(#ab)
a#b

(#ab)
a#b

(perm)
[a]a = [b]b

(b a) · [b]b ≡ [a]a

b#X
(#[]a)

b#[a]X
(#[]a)

a#[a]X
(perm)

[b](b a)X = [a]X

(b a) · [a]X ≡ [b](b a)X

Here ≡ is syntactic identity.

Nominal algebra with applications TAU, Israel, 4/5/2006. 21

Axioms

A freshness context ∆ is a finite set of primitive freshness assertions.

An axiom ∆ ` t = u is a pair of a freshness context and an equality

assertion. If ∆ is empty write it just t = u.

We can use axioms to enrich provable equality, which currently stands

at some generalisation of α-equivalence.

Nominal algebra with applications TAU, Israel, 4/5/2006. 22

Theory of λ-calculus LAM

(λ[a]Y)X = Y [a7→X].

(Assume suitable term-formers λ, app and sugar.)

As an axiom, we instantiate Y and X to ‘any term’ when we enrich

equality, generating a family of equalities for each instantiation (and

each context). Thus, Y and X do represent ‘any term’, with universal

quantification at top level. Instantiation is direct replacement of an

unknown by a term (no capture avoidance).

Nominal algebra with applications TAU, Israel, 4/5/2006. 23

Theory of first-order logic FOL

P ⇒ Q⇒ P = > (P ⇒ Q) ⇒ (Q⇒ R) ⇒ (P ⇒ R) = >

¬¬P ⇒ P = > ∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

⊥ ⇒ P = > a#P ` ∀[a](P ⇒ Q) ⇔ (P ⇒ ∀[a]Q) = >

T ≈ T = > ∀[a]P ⇒ P [a7→T] = >

U ≈ T ∧ P [a7→T] ⇒ P [a7→U] = >

(Assume suitable term-formers ≈,∀,⇒,⊥ and sugar.)

The ‘= >’ bit just converts a predicate into a judgement.

Nominal algebra with applications TAU, Israel, 4/5/2006. 24

But wait. . .

Remember that substitution is a term-former.

Nominal algebra with applications TAU, Israel, 4/5/2006. 25

Theory of substitution SUB

f(X1, . . . ,Xn)[a7→T] = f(X1[a7→T], . . . ,Xn[a7→T])

b#T ` ([b]X)[a7→T] = [b](X[a7→T])

a[a7→T] = T

a#X ` X[a7→T] = X

b#X ` X[a7→b] = (b a)X

Nominal algebra with applications TAU, Israel, 4/5/2006. 26

Picture of what we have done

• ≡ is syntactic identity [a]a 6≡ [b]b

• = (no axioms) is α-equivalence b#X ` [b](b a)X = [a]x

• =SUB is substitution b#Y ` Y [b7→X] = Y

• =LAM is αβ-equivalence (λ[a]a)b = b

• =FOL is logical equivalence (∀[a](a ≈ a)) = >

There is much to say about all of these theories. In another talk I will

discuss SUB.

Nominal algebra with applications TAU, Israel, 4/5/2006. 27

We concentrate on FOL. . .

. . . in the rest of this talk. We build/specify FOL on top of SUB, so that

as far as it is concerned, substitution (and α-equivalence) are structural

properties of formulae.

That formulae may contain explicit ‘unknown formulae’ is no more (or

less!) relevant to the system, than it is to us when we write ∀a.φ.

Nominal algebra with applications TAU, Israel, 4/5/2006. 28

Nominal algebra theories

This system can make formal assertions about unknown formulae and

relations between them, in the syntax itself, because we have the syntax

to do it; X , Y , Z .

This means we get extra: not only first-order logic but

one-and-a-halfth-order logic, which is first-order logic whose syntax is

enriched with first-class formula unknowns.

The treatment of binding is significantly different from that of

second-order logic.

Remember: once we have built something in a framework (Nominal

Algebra), we can throw away the framework. That’s what we do next.

Nominal algebra with applications TAU, Israel, 4/5/2006. 29

Recall FOL

P ⇒ Q⇒ P = > (P ⇒ Q) ⇒ (Q⇒ R) ⇒ (P ⇒ R) = >

¬¬P ⇒ P = > ∀[a](P ∧Q) ⇔ ∀[a]P ∧ ∀[a]Q = >

⊥ ⇒ P = > a#P ` ∀[a](P ⇒ Q) ⇔ P ⇒ ∀[a]Q = >

T ≈ T = > ∀[a]P ⇒ P [a7→T] = >

U ≈ T ∧ P [a7→T] ⇒ P [a7→U] = >

Soon we’ll have a sequent system corresponding to this particular

Nominal Algebra theory.

Nominal algebra with applications TAU, Israel, 4/5/2006. 30

Recall: First-Order Logic (FOL)

Fix countably infinitely many variable symbols a, b, c, Let terms be:

t ::= a

Formulae or predicates are:

φ ::= ⊥ | φ⇒ φ | ∀a.φ | t ≈ t′.

Write ≡ for syntactic identity.

Nominal algebra with applications TAU, Israel, 4/5/2006. 31

Derivation

A context Φ and cocontext Ψ are finite and possibly empty sets of
formulae. A judgement is a pair Φ ` Ψ. Valid judgements:

(Axiom)
φ, Φ ` Ψ, φ

(⊥L)
⊥, Φ ` Ψ

(⇒R)
φ, Φ ` Ψ, ψ

Φ ` Ψ, φ⇒ ψ
(⇒L)

Φ ` Ψ, φ ψ, Φ ` Ψ

φ⇒ ψ, Φ ` Ψ

(∀R)
Φ ` Ψ, ψ

Φ ` Ψ, ∀a.ψ
a fresh for Φ,Ψ (∀L)

φ[a7→t], Φ ` Ψ

∀a.φ, Φ ` Ψ

Nominal algebra with applications TAU, Israel, 4/5/2006. 32

Hang on a moment

What are φ and ψ?

Meta-variables ranging over formulae.

What are t and a?

Meta-variables ranging over terms and variable symbols.

What is φ[a7→t]?

A meta-level operation defined given real predicate, variable symbol,

and term.

What is ‘a fresh for Φ and Ψ’?

A meta-level condition defined given a real context and cocontext.

Nominal algebra with applications TAU, Israel, 4/5/2006. 33

Schema

Quite a lot of things happen in the meta-level in First-Order Logic (FOL).
For example

` ∀a.∀b.φ⇔ ∀b.∀a.φ

is derivable for every value of the meta-variable φ:

(Axiom)
φ ` φ

(∀L)
∀b.φ ` φ

(∀L)
∀a.∀b.φ ` φ

(∀R)
∀a.∀b.φ ` ∀a.φ

(∀R)
∀a.∀b.φ ` ∀b.∀a.φ

Nominal algebra with applications TAU, Israel, 4/5/2006. 34

Schema

However, the fact that this happens for all φ cannot be expressed in

FOL.

Some nice example theorems:

• If t ≈ t′ then φ[a7→t] ⇔ φ[a7→t′].

• If a 6∈ fv(φ) then ` (∀a.φ) ⇔ φ.

• ∀a.∀b.φ if and only if ∀b.∀a.φ.

Nominal algebra with applications TAU, Israel, 4/5/2006. 35

Second/Higher-order logic

In Higher-Order Logic (HOL), propositions have a type o and ∀σ is a

constant with type (σ → o) → o, write just ∀ or ∀ : (σ → o) → o.

Then the single sequent

` ∀λf.
(

∀λa.∀λb.fab⇔ ∀λb.∀λa.fab
)

expresses that

` ∀a.∀b.φ⇔ ∀b.∀a.φ

holds for all φ.

Here f has function type. If a : σ and b : τ then f : σ → τ → o and

‘fab is φ’.

Nominal algebra with applications TAU, Israel, 4/5/2006. 36

Second/Higher-order logic

Similarly:

• ‘If t ≈ t′ then φ[a7→t] ⇔ φ[a7→t′]’ becomes

t ≈ t′ ` ∀λf.
(

ft⇔ ft′
)

.

in HOL.

Note the types: f has function type and if t : σ then f : σ → o

and ∀ : ((σ → o) → o) → o.

• ‘If a 6∈ fv(φ) then ` ∀a.φ⇔ φ’ is not expressible in HOL.

Nominal algebra with applications TAU, Israel, 4/5/2006. 37

Schema

One-and-a-halfth order logic addresses these problems in a different

way.

Take term-formers ≈, ∀, ⇒, and ⊥.

Nominal algebra with applications TAU, Israel, 4/5/2006. 38

Sugar and example terms

Write ¬φ for φ⇒ ⊥, write φ ∧ φ′ for ¬(φ⇒ ¬φ′), write φ⇔ φ′ for

(φ⇒ φ′) ∧ (φ′ ⇒ φ), write φ ∨ φ′ for (¬φ) ⇒ φ′, write > for

⊥ ⇒ ⊥.

• ∀[a]∀[b]X ⇔ ∀[b]∀[a]X .

• T ≈ T ′.

• X[a7→T] ⇔ X[a7→T ′].

• ∀[a]X ⇔ X .

Nominal algebra with applications TAU, Israel, 4/5/2006. 39

Sequent derivation rules

(Axiom)
φ, Φ ∆̀ Ψ, φ

(⊥L)
⊥, Φ ∆̀ Ψ

Φ ∆̀ Ψ, φ ψ, Φ ∆̀ Ψ
(⇒L)

φ⇒ ψ, Φ ∆̀ Ψ

φ, Φ ∆̀ Ψ, ψ
(⇒R)

Φ ∆̀ Ψ, φ⇒ ψ

φ′, Φ ∆̀ Ψ ∆ S̀UB φ
′ = φ[a7→t]

(∀L)
∀[a]φ, Φ ∆̀ Ψ

Φ ∆̀ Ψ, ψ ∆ ` a#Φ,Ψ
(∀R)

Φ ∆̀ Ψ, ∀[a]ψ

Nominal algebra with applications TAU, Israel, 4/5/2006. 40

Em. . . just a few more sequent derivation rules

(≈R)
Φ ` Ψ, t ≈ t

φ′, Φ ` Ψ ∆ S̀UB φ
′ = φ′′[a7→t′] ∆ S̀UB φ = φ′′[a7→t]

(≈L)
t′≈t, φ, Φ ∆̀ Ψ

φ′, Φ ∆̀ Ψ ∆ S̀UB φ
′ = φ

(StructL)
φ, Φ ∆̀ Ψ

Φ ∆̀ Ψ, ψ′ ∆ S̀UB ψ
′ = ψ

(StructR)
Φ ∆̀ Ψ, ψ

Nominal algebra with applications TAU, Israel, 4/5/2006. 41

Example derivations

∀[a]∀[b]X ` X a#∀[b]X
(∀R)

∀[a]∀[b]X ` ∀[a]X b#∀[a]∀[b]X
(∀R)

∀[a]∀[b]X ` ∀[b]∀[a]X

(Axiom)
X ` X S̀UB X = X[b7→b]

(∀L)
∀[b]X ` X S̀UB ∀[b]X = (∀[b]X)[a7→a]

(∀L)
∀[a]∀[b]X ` X

Semantics in FOL: “For all φ and ψ, ∀a.∀b.φ ` ∀b.∀a.ψ.”

Nominal algebra with applications TAU, Israel, 4/5/2006. 42

Freshness part of the derivation

(#[]a)
b#[b]X

(#f)
b#∀[b]X

(#[]a)
b#[a]∀[b]X

(#f)
b#∀[a]∀[b]X

Nominal algebra with applications TAU, Israel, 4/5/2006. 43

Another example derivation

(Axiom)
X[a7→T ′] ` X[a7→T ′]

S̀UB X[a7→a][a7→T ′] = X[a7→T ′],

S̀UB X[a7→a][a7→T] = X[a7→T]
(≈L)

T ′ ≈ T, X[a7→T] ` X[a7→T ′]

Semantics in FOL:

“For all t and t′ and φ, t′ ≈ t, φ[a7→t] ` φ[a7→t′].”

Nominal algebra with applications TAU, Israel, 4/5/2006. 44

One more example derivation

(Axiom)
X à#X X a#X ` a#X

(∀R)
X à#X ∀[a]X

Semantics in FOL:

“For all φ and a, if a 6∈ fv(φ) then φ ` ∀a.φ.”

Nominal algebra with applications TAU, Israel, 4/5/2006. 45

A nice theorem:

Φ ∆̀ Ψ, φ φ, Φ ∆̀ Ψ
(Cut)

Φ ∆̀ Ψ

Theorem (cut-elimination): Cut is eliminable.

The cut-elimination procedure is almost standard — but this is

cut-elimination in the presence of unknown formulae.

Since the cut-elimination procedure is normally written parametrically

over those formulae, this is no surprise really. However, the meta-level

reasoning about substitution and α-equivalence is now all completely

explicit on the nominal terms.

Nominal algebra with applications TAU, Israel, 4/5/2006. 46

Another nice theorem:

Say a nominal term is closed when it mentions no unknowns. So a is

closed but X is not.

Theorem: First-order logic (and its derivations) correspond to sequents

of closed terms (and their derivations); term-for-term up to S̀UB , and

proof-rule by proof-rule (up to (Struct)).

Nominal algebra with applications TAU, Israel, 4/5/2006. 47

Publicity for `SUB

(next talk, probably)

Write t `SUB

∆ u when t = u is derivable from assumptions ∆ using the
following axioms:

(f 7→) f(u1, . . . , un)[a7→t] = f(u1[a7→t], . . . , un[a7→t])

([b]7→) b#t⇒ ([b]u)[a7→t] = [b](u[a7→t])

(var 7→) a[a7→t] = t

(u7→) a#u⇒ u[a7→t] = u

(ren7→) b#u⇒ u[a7→b] = (b a) · u

(perm) a, b#t⇒ (a b) · t = t

Nominal algebra with applications TAU, Israel, 4/5/2006. 48

SUB

What is the theory of substitution? Is it decidable? What are its models?

How do we know we have the right axioms?

Nominal algebra with applications TAU, Israel, 4/5/2006. 49

Permutation action

π · a ≡ π(a) π · (π′X) ≡ (π ◦ π′)X

π · [a]t ≡ [π(a)](πt)

π · f(t1, . . . , tn) ≡ f(πt1, . . . , πtn)

Nominal algebra with applications TAU, Israel, 4/5/2006. 50

Relation to HOL

Not direct since we can express a#t and HOL cannot.

Also, suppose X : o and t : T. Then X[a7→t] corresponds to ft in

HOL where f : T → o. However, X[a7→t][a′ 7→t′] corresponds to

f ′tt′ where f ′ : T → T → o. SimilarlyX[a7→t][a′ 7→t′][a′′ 7→t′′]. . .

This is type raising.

In one-and-a-halfth-order logic, X remains at sort o throughout and the

universal quantification implicit in the use of X allows arbitrary numbers

of substitutions.

Nominal algebra with applications TAU, Israel, 4/5/2006. 51

Relation to HOL

One-and-a-halfth-order logic is not fully higher-order. We can write

X ` Y

meaning in FOL “For all formulae φ and ψ, φ ` ψ.”

In HOL we can write this as ` ∀φ, ψ.φ⇒ ψ.

However we can also write ` ∀ψ.
(

(∀φ.φ) ⇒ ψ
)

.

This is not possible in one-and-a-halfth-order logic: (∀[X]X) ` Y is

not syntax.

Nominal algebra with applications TAU, Israel, 4/5/2006. 52

Conclusions

Nominal Algebra enriches algebra with object-level variable symbols

(atoms) with primitive facilities for abstraction and α-renaming ([a]t,
πX , a#X).

We can use this theory of axiomatise systems with binding, like

first-order logic.

We thus get a formal framework for defining logics (and calculi).

Nominal algebra with applications TAU, Israel, 4/5/2006. 53

Conclusions

Once your theory is specified, you can throw out the framework and just

keep the theory . . .

. . . with nominal algebra providing now a semantics, e.g. the sequent

system for one-and-a-halfth-order logic has a sound and complete

semantics in FOL, with

Φ ∆̀ Ψ translating to ∆ ` (Φ∧ ⇒ Ψ∨) = >.

(∧ means ‘put ∧ between the elements of Φ’, similarly for ∨).

Nominal algebra with applications TAU, Israel, 4/5/2006. 54

Conclusions

We get extra. E.g. one-and-a-halfth order logic was intended to be

first-order logic, then we noticed that we had predicate unknowns; thus

enabling us to reason universally on predicates in a new way.

This really is new, because a#X is not expressible using other

techniques (to our knowledge); not in full generality for a completely

unkown X .

Nominal algebra with applications TAU, Israel, 4/5/2006. 55

Conclusions

For some further work, how about. . .

• Two-and-a-halfth-order logic (where you can abstract X)?

• Implementation and automation?

• Semantics (aside from in FOL)?

• Axiomatisations of other logics. Remember: we can always build an

‘onion’ and delegate structural matters such as =SUB to structural

rules. We can do this even in the presence of unknowns. That is the

point:

Structure and abstraction in the presence of first-class unknowns.

Nominal algebra with applications TAU, Israel, 4/5/2006. 56

