
On substitution

Murdoch J Gabbay

Tel Aviv University, Israel 11/5/2006

On substitution TAU, Israel, 11/5/2006. 1

This talk. . .

. . . is the second in a series of about four talks in the framework of a

mini-course describing (some? most?) of the mathematics I’ve done

over the past six years (since I got my PhD).

On substitution TAU, Israel, 11/5/2006. 2

Motivation

In this talk I’ll discuss substitution. Let us specify this in ‘nominal style’:

On substitution TAU, Israel, 11/5/2006. 3

Theory of substitution SUB

f(X1, . . . ,Xn)[a7→T] = f(X1[a7→T], . . . ,Xn[a7→T])

b#T ` ([b]X)[a7→T] = [b](X[a7→T])

a[a7→T] = T

a#X ` X[a7→T] = X

b#X ` X[a7→b] = (b a)X

On substitution TAU, Israel, 11/5/2006. 4

Nominal Terms

Nominal terms are a syntax inductively generated by

t ::= a | πX | [a]t | f(t, . . . , t).

Here:

• We fix a, b, c, . . . ∈ A a countably infinite set of atoms.

• We fix X,Y,Z, . . . ∈ V a countably infinite set of unknowns

(disjoint from the atoms; everything’s disjoint).

• We fix f, g, . . . some term-formers.

• Call [a]t an abstraction.

On substitution TAU, Israel, 11/5/2006. 5

Nominal Terms (term-formers)

Explicit substitution is a term-former Σ. We write

Σ([a]u, t) as u[a7→t].

Other possible term-formers (that’s the f) are:

• + as in t + u.

• λ as in λ[a]t.

• ∀ as in ∀[a]t.

• Q as in Q([a]t, [b]u) where a#u and b#t (modelling a

‘simultaneous’ quantifier).

On substitution TAU, Israel, 11/5/2006. 6

Nominal Terms (permutations)

t ::= a | πX | [a]t | f(t, . . . , t).

π is a permutation. A permutation is a finitely supported bijection on A.

Finitely supported means:

π(a) = a for all a ∈ A except for a finite set of atoms.

On substitution TAU, Israel, 11/5/2006. 7

Nominal Terms

For example permutations are:

(a b c) and Id

(a to b to c to a, and the identity function). Permutations are not:

(a1 a2)(a3 a4) . . .

for A = {a1, a2, . . .}.

(a b) · t means ‘swap a and b in t’. For example, (a b) · [a]b ≡ [b]a.

(a b)X means ‘we do not know what X is yet, but when we do, we will

swap a and b in it’.

On substitution TAU, Israel, 11/5/2006. 8

Freshness derivation rules (formally)

(#ab)
a#b

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

π-1(a)#X
(#X)

a#πX

On substitution TAU, Israel, 11/5/2006. 9

Core equality derivation rules (formally)

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

t = u
(cong)

C[t] = C[u]

a#t b#t
(perm)

(a b) · t = t

On substitution TAU, Israel, 11/5/2006. 10

For example

(#ab)
a#b

(#ab)
a#b

(perm)
[a]a = [b]b

(b a) · [b]b ≡ [a]a

b#X
(#[]a)

b#[a]X
(#[]a)

a#[a]X
(perm)

[b](b a)X = [a]X

(b a) · [a]X ≡ [b](b a)X

Here ≡ is syntactic identity.

On substitution TAU, Israel, 11/5/2006. 11

Syntactic model

The idea of SUB, the theory of substitution, can easily be given a

concrete model based on syntax — the syntax of nominal terms

themselves.

Call a term t a ground term when

• t does not mention explicit substitution (so a[a7→t′] is not ground)

• t does not contain unknowns (so a is ground but [a]X is not).

On substitution TAU, Israel, 11/5/2006. 12

Syntactic model

The model T consists of ground terms, quotiented by provable equality

in SUB. If t is any term write [[t]] for the intersection of the equivalence

class of t, with the set of ground terms.

Interpret substitution by [[u]][a7→[[t]]] = [[u[a7→t]]].

On substitution TAU, Israel, 11/5/2006. 13

Syntax as a model of substitution

This is capture-avoiding substitution. Let’s do an example. Suppose one

term-former λ. Then:

[[λ[a]a]] = [[λ[b]b]]

(recalling the derivation that [a]a = [b]b and recalling (cong)).

So α-equivalence is ‘for free’ from the core theory of equality.

On substitution TAU, Israel, 11/5/2006. 14

Syntax as a model of substitution

Also

[[(λ[a]b)[b7→a]]] = [[λ(([a]b)[b7→a])]].

However,

[[λ(([a]b)[b7→a])]] 6= [[λ[a](b[b7→a])]]

because the side-condition a#a is not derivable (recalling the rules; we
can derive a#b but not a#a).

However, we have α-renaming so

[[λ(([a]b)[b7→a])]] = [[λ[a′](b[b7→a])]].

Thus

[[(λ[a]b)[b7→a]]] = [[λ[a′]a]].

On substitution TAU, Israel, 11/5/2006. 15

Syntax as a model of substitution

This (and some more simple calculations) show that ground terms up to

provable equality, with substitution interpreted as . . . capture-avoiding

substitution, is a sound model for our axioms.

On substitution TAU, Israel, 11/5/2006. 16

Capture-avoiding distributivity

a#Y S̀UB Z[a7→X][b7→Y] = Z[b7→Y][a7→X[b7→Y]]

Write σ for [b7→Y]; use unsugared syntax for other substitutions.

Σ([a]Z,X)σ = Σ(([a]Z)σ,Xσ)

a#Y

([a]Z)σ = [a](Zσ) Xσ = Xσ

Σ(([a]Z)σ,Xσ) = Σ([a](Zσ),Xσ)

Σ([a]Z,X)σ = Σ([a](Zσ),Xσ)

So: substitution is just another term-former.

On substitution TAU, Israel, 11/5/2006. 17

Recall SUB

f(X1, . . . ,Xn)[a7→T] = f(X1[a7→T], . . . ,Xn[a7→T])

b#T ` ([b]X)[a7→T] = [b](X[a7→T])

a[a7→T] = T

a#X ` X[a7→T] = X

b#X ` X[a7→b] = (b a)X

On substitution TAU, Israel, 11/5/2006. 18

More example derivations (sketched)

b#Z S̀UB Z[a7→X] = ((b a)Z)[b7→X]

This is b#Z S̀UB Σ([a]Z,X) = Σ([b]((b a)Z,X).

Using (congf), (refl), and (symm), it suffices to derive

[b](a b)Z = [a]Z . Using (perm) it suffices to derive a, b#[a]Z ,

which is easy.

On substitution TAU, Israel, 11/5/2006. 19

More example derivations (sketched)

S̀UB X[a7→a] = X

Use (fr) to give ourselves b#X for fresh b 6∈ X,X[a7→a].

By (tran) it suffices to derive

X[a7→a] = ((b a)X)[b7→a]

((b a)X)[b7→a] = X.

First is an instance of previous example. For the second, it suffices to

derive a#(b a)X ; this follows from b#X .

On substitution TAU, Israel, 11/5/2006. 20

Conservativity

Theorem: SUB is conservative over CORE.

That is,

∆ S̀UB t = u if and only if ∆ C̀ORE t = u,

assuming that neither t nor u mention explicit substitution.

(CORE is the core derivation system, in essence α-equivalence up to

abstracted atoms.)

On substitution TAU, Israel, 11/5/2006. 21

Completeness with respect to the ground term model

Theorem: SUB is complete with respect to the ground term model.

That is,

• If [[tσ]] = [[uσ]] for all closing σ such that ` ∆σ

(σ maps unknowns to ground terms and its action extends naturally,

e.g. {a#X}σ = {a#σ(X)}),

• then ∆ S̀UB t = u.

So SUB is all of substitution.

On substitution TAU, Israel, 11/5/2006. 22

Why are these results hard?

Substitution has the character of a computation, which suggests we

recast it as a rewrite system and prove confluence; a standard prelude

to results such as those mentioned.

But also it has a ‘simultaneous’ character, e.g.

S̀UB X[a7→a
′][b7→b

′][c7→c
′] = X[c7→c

′][b7→b
′][a7→a

′]

is derivable but there is no obvious direction to the equality.

On substitution TAU, Israel, 11/5/2006. 23

Solution to the problem

Dissect SUB as a rewrite system and an equational system, as follows:

On substitution TAU, Israel, 11/5/2006. 24

SUBfr, a nominal rewrite system

(Rvar) ` a[a7→X] → X

(R#) a#Z ` Z[a7→X] → Z

(Rf) ` f(Z1, . . . , Zn)[a7→X] → f(Z1[a7→X], . . . , Zn[a7→X])

(f 6=sub)

(Rsub) a#Y ` Z[a7→X][b7→Y] → Z[b7→Y][a7→X[b7→Y]]

(Rabs) c#X ` ([c]Z)[a7→X] → [c](Z[a7→X])

(Rren) b#Z ` Z[a7→b] → (b a)Z

On substitution TAU, Israel, 11/5/2006. 25

Recall SUB

f(X1, . . . ,Xn)[a7→T] = f(X1[a7→T], . . . ,Xn[a7→T])

b#T ` ([b]X)[a7→T] = [b](X[a7→T])

a[a7→T] = T

a#X ` X[a7→T] = X

b#X ` X[a7→b] = (b a)X

On substitution TAU, Israel, 11/5/2006. 26

The problem with SUBfr. . .

. . . is that we can use (Rsub) forever; it is not directed and worse, it

makes terms larger.

On substitution TAU, Israel, 11/5/2006. 27

SUBe

So we work up to a provable equality a bit stronger than CORE (but
much weaker than SUB):

(Eswap) a#Y, b#X ` Z[a7→X][b7→Y] = Z[b7→Y][a7→X]

(Egarbage) a#Z ` Z[a7→X] = Z

Assume a#Y and apply (Rsub) twice to Z[a7→X][b7→Y], we get

Z[a7→X[b7→Y]][b7→Y [a7→X[b7→Y]]].

But a#Y so the RHS simplifies using (Egarbage) to

Z[a7→X[b7→Y]][b7→Y].

Further rewrites are equal using (Eswap).

On substitution TAU, Israel, 11/5/2006. 28

We are done.

It is relatively easy to prove that SUBe is conservative over CORE, and

that if ∆ S̀UBe t = u then t and u are interrewritable in SUBfr.

It is also easy to show SUBfr locally confluent (nontrivial critical pairs

are joinable; uses results from Nominal Rewriting).

It is, finally, possible to show that rewriting in SUBfr is strongly

normalising up to equality in SUBe, using a highly cunning measure.

On substitution TAU, Israel, 11/5/2006. 29

Semantics

So we have a sound and complete axiomatisation of something which is

recognisably capture-avoiding substitution on a concrete syntax-based

model.

But the axioms are quite abstract — what other models are there?

On substitution TAU, Israel, 11/5/2006. 30

Example models

On A interpret substitution by itself, namely:

x[a7→y] = y (x = a or x = y)

x[a7→y] = x (x 6= a and x 6= y).

Let L be the set of finite lists of atoms, e.g. [] and [a, b, b].

Interpret substitution by list insertion, e.g.

[a, b, c][b7→[a, b, c]] = [a, a, b, c, c]

[a, a, b][b7→[b, a]] = [a, a, b, a].

On substitution TAU, Israel, 11/5/2006. 31

So far, so simple

Those were quite simple substitution actions which are still basically

syntax (based on trees).

Say a set of atoms is cofinite when its complement in the set of all

atoms is finite.

Write Pfs for the set of finite or cofinite sets.

If U, V ∈ Pfs write UXV for the elements in precisely one of U and

V (exclusive or).

On substitution TAU, Israel, 11/5/2006. 32

Non-syntactic models of substitution

Note that a#U (meaning Nb. (b a)U = U) when

• U is finite and a is in U , or

• U is cofinite and a is in A \ U .

Interpret substitution by:

W [a7→U] = W if a#W , and otherwise. . .

W [a7→U] = (WX{a})XU.

On substitution TAU, Israel, 11/5/2006. 33

Non-syntactic models of substitution

Note that this model is not syntax-based. Observe for example that

{a, b}[a7→{b}] = {}.

Not what you’d expect of a syntactic model — atoms can ‘explode’ out of

existence.

On substitution TAU, Israel, 11/5/2006. 34

Non-syntactic models of substitution

λ-terms quotiented by αβ-equivalence model substitution.

This model is syntax-based but the equivalence classes are extremely

complex. P under application has the same computational content as

Pa under substituting for a, for some fresh a 6∈ P .

On substitution TAU, Israel, 11/5/2006. 35

The environment model

Take an ‘ordinary’ set, such as N. Then

(A ⇒ N) ⇒ N

is a model of substitution, interpreting µ[a7→τ] by

λκ ∈ (A ⇒ N). µ(κ{a7→τκ}).

Write this set N̂.

This is the correct notion of ‘N with atoms and a substitution added’.

An interesting element of N̂ is λκ.κ(a) ∗ κ(b). This behaves like

‘a ∗ b’, our old friend from school/kindergarten.

On substitution TAU, Israel, 11/5/2006. 36

Function models

Yes! Functions between models of substitution, are models of

substitution. We can write h[a7→f] and it really does mean something.

Holy functions.

On substitution TAU, Israel, 11/5/2006. 37

Function models

Fix h, f ∈ X ⇒ Y and a ∈ A.

Define:

h[a7→b]x = ((b a)h)x If b#h

(h[a7→f])x = Na′. (((a′a)h)x)[a′ 7→fx] Otherwise.

Here b in h[a7→b] is the interpretation of b in X ⇒ Y , which is λx.b.

Here if F (a′) is a function then Na′. F (a′) is the unique value of F for

‘most’ (all but finitely many) a′, if this exists.

On substitution TAU, Israel, 11/5/2006. 38

Examples

t7→[a]t is a function in X ⇒ [A]X mapping x to [a]x.

If X is the ground term model for the syntax of the λ-calculus (call it Λ)

then we can compose with term-former λ in [A]X ⇒ X to obtain

t7→λa.t ∈ Λ ⇒ Λ.

On substitution TAU, Israel, 11/5/2006. 39

Examples

If x ∈ X then ‘the substitution [a7→x]’ can be represented as

λz.z[a7→x] ∈ X ⇒ X.

So not only do we have a theory of substitution; we can represent it

explicitly as an element of a larger (functional) model of substitution.

On substitution TAU, Israel, 11/5/2006. 40

Examples

Elements can be considered as functions over their atoms, yet also as

data.

Thus we can write x[a7→y] and y[a7→x]; there is no sense in which x

is a priori the ‘master’ (like a function in the simply-typed λ-calculus)

and y is a priori the ‘slave’ (its argument, of lower type).

On substitution TAU, Israel, 11/5/2006. 41

Examples

λκ.κ(a) ∗ κ(b) ∈ N̂ represents (λn.λm.n ∗ m) if we use

substitutions instead of function application to instantiate.

Substitutions [a7→5] and [b7→6] can arrive in any order.

On substitution TAU, Israel, 11/5/2006. 42

Examples

Let B be a two-element set {>,⊥}.

in (A × X) ⇒ B̂ is such that #(a, x) = λκ.> when a#x and

otherwise #(a, x) = λκ.⊥.

Using #, we can case-split on atoms which have not yet been

substituted for, and perhaps (in some programming language based on

this semantics) take appropriate action to fetch their values. Hugely

flexible treatment of unknowns!

On substitution TAU, Israel, 11/5/2006. 43

Final example

An ‘exception handler’

λx.if a#x then x else x′ ∈ X ⇒ X

(using natural notation) treats a as an exception.

If it detects a it defaults to x′.

It is important to appreciate that the semantics propagates a for us. We

do not need to program propagation of the exception upwards, i.e. make

non-local changes to code to ‘chaperone’ a through intervening steps of

the calculation.

On substitution TAU, Israel, 11/5/2006. 44

Conclusions

Substitution is hard!

It is mathematically interesting!

It may have applications as an interesting new semantics for

(meta-)programming!

Ask me about the associated λ-calculus, which can be interpreted in the

cartesian closed category of models of substitution!

On substitution TAU, Israel, 11/5/2006. 45

