A NEW calculus of contexts

Murdoch J Gabbay

Tel Aviv University, Israel 14/5/2006

This talk.

... is the third in a series of about four talks in the framework of a mini-course describing (some? most?) of the mathematics l've done over the past six years (since I got my PhD).

Motivation

In this talk l'll discuss the NEW calculus of contexts, see my webpage www. gabbay. org. uk for the paper [PPDP'05].

Motivation

I'd like to talk about the λ-calculus.
How original.
No, wait! I have something NEW to say.

Motivation

Consider the term λ x.t.
x is a variable symbol and t is a meta-level variable, ranging over λ-terms. Instantiation of t does not avoid capture: if we set t to be x, we get λx. x.

The essence of the meta-level

Claim: This is the essence of the meta-level.

- Substitution of ‘strong’ (meta-level) variables for 'weak’ (object-level) variables does not avoid capture. Call this instantiation.
- Substitution of variables of the same level does avoid capture.

Why formalise the meta-level?

It's what we use to make programs, do logic, etcetera; whether we do this formally or not, it's there.

A formal framework which accurately represents our intention when we write ' λx. t ', including how t is instantiated, is worthy of serious mathematical investigation.

Why formalise the meta-level?

In this course we have already seen the following based on this philosophy and accompanying mathematics:

1. Semantics.
2. Logic with proof-theory.
3. Algebra.

Let's now look at a calculus, i.e. do programming.

An example

Suppose x is weak (level 1 , say) and X is stronger (level 2, say), then

$$
\begin{aligned}
(\lambda X \cdot \lambda x \cdot X) x & \rightsquigarrow(\lambda x \cdot X)[X \mapsto x] \\
& \rightsquigarrow \lambda x \cdot(X[X \mapsto x]) \rightsquigarrow \lambda x \cdot x .
\end{aligned}
$$

Difficulty: α-equivalence

If $\lambda x . X$ and $\lambda y . X$ are equivalent then

$$
(\lambda X \cdot \lambda x \cdot X) x \rightsquigarrow \lambda y \cdot x .
$$

This is undesirable. Yet some capture-avoidance remains legitimate, e.g. we still want λx. x to be equivalent to $\lambda y . y$.

The syntax

Suppose sets of variables $a_{i}, b_{i}, c_{i}, n_{i}, \ldots$ for $i \geq 1$.
a_{i} has level i. Syntax is given by:

$$
s, t::=a_{i}|\quad t t| \lambda a_{i} . t\left|\quad t\left[a_{i} \mapsto t\right]\right| \quad И a_{i} . t .
$$

- $s\left[a_{i} \mapsto t\right]$ is explicit substitution.
- $\lambda a_{i} . t$ is abstraction.
- $И a_{i} . t$ a binder.

Equate up to $И$-binding, nothing else.
Call b_{j} stronger than a_{i} when $j>i$.
E.g. b_{3} is stronger than a_{1}.

Example terms and reductions

x, y, z have level 1 . X, Y, Z have level 2 .

$$
\begin{aligned}
& (\lambda x \cdot x) y \rightsquigarrow x[x \mapsto y] \rightsquigarrow y \\
& (\lambda x \cdot X)[X \mapsto x] \rightsquigarrow \lambda x .(X[X \mapsto x]) \rightsquigarrow \lambda x . x \\
& x[X \mapsto t] \rightsquigarrow x \\
& x\left[x^{\prime} \mapsto t\right] \rightsquigarrow x \\
& x[x \mapsto t] \rightsquigarrow t \\
& X[x \mapsto t] \nsim
\end{aligned}
$$

Ordinary reduction
Context substitution X stronger than x
Ordinary substitution
Ordinary substitution
Suspended substitution

Records

Fix constants 1 and 2 .
l and m have level 1, X has level 2.
A record:

$$
X[l \mapsto 1][m \mapsto 2]
$$

Record lookup

$$
\begin{aligned}
X[l \mapsto 1][m \mapsto 2][X \mapsto m] & \rightsquigarrow X[l \mapsto 1][X \mapsto m][m \mapsto 2] \\
& \rightsquigarrow X[X \mapsto m][l \mapsto 1][m \mapsto 2] \\
& \rightsquigarrow m[l \mapsto 1][m \longmapsto 2] \\
& \rightsquigarrow m[m \longmapsto 2] \\
& \rightsquigarrow 2 .
\end{aligned}
$$

In-place update

$$
\begin{aligned}
X[l \mapsto 1][m \mapsto 2][X \mapsto X[l \mapsto 2]] & \rightsquigarrow X[l \mapsto 1][X \mapsto X[l \mapsto 2]][m \mapsto 2] \\
& \rightsquigarrow X[X \mapsto X[l \mapsto 2]][l \mapsto 1][m \mapsto 2] \\
& \rightsquigarrow X[l \mapsto 2][l \mapsto 1][m \mapsto 2] \\
& \rightsquigarrow X[l \mapsto 2][m \mapsto 2]
\end{aligned}
$$

Substitution-as-a-term

$(\lambda X . X[l \mapsto \lambda n . n]) \quad$ applied to $\quad l m$

$$
(\lambda X . X[l \mapsto \lambda n . n])(l m) \rightsquigarrow X[l \mapsto \lambda n . n][X \mapsto l m] \rightsquigarrow^{*}(\lambda n . n) m
$$

In-place update as a term

$$
\lambda \mathcal{W} . \mathcal{W}[X \mapsto X[l \mapsto 2]] \quad \text { applied to } \quad X[l \mapsto 1][m \mapsto 2]
$$

\ldots and so on (\mathcal{W} has level 3).
Likewise global state (world = a big hole), and Abadi-Cardelli imp- ε object calculus.

Records (again, using λ)

Fix constants 1 and 2 .
l and m have level $1 . \quad X$ has level 2 .
A record:

$$
\lambda X . X[l \mapsto 1][m \mapsto 2] .
$$

Now we use application to retrieve the value stored at m :

$$
(\lambda X . X[l \mapsto 1][m \mapsto 2]) m \rightsquigarrow X[l \mapsto 1][m \mapsto 2][X \mapsto m]
$$

Records (again, using λ)

$$
\lambda X . X[l \mapsto \mathcal{W}][m \mapsto 2]
$$

Here \mathcal{W} has level 3 . It beats X, l, and m.
Apply $[\mathcal{W} \mapsto X]$:

$$
(\lambda X . X[l \mapsto \mathcal{W}][m \mapsto 2])[\mathcal{W} \mapsto X] \rightsquigarrow^{*} \lambda X . X[l \mapsto X][m \mapsto 2] .
$$

Apply to ($l m$) and obtain ($l 2$)2:

$$
(\lambda X . X[l \mapsto X][m \mapsto 2])(l m) \rightsquigarrow^{*} l m[l \mapsto l m][m \mapsto 2] \rightsquigarrow^{*}(l 2) 2
$$

Records (again, using λ)

$$
(\lambda \mathcal{W} \cdot \lambda X . X[l \mapsto \mathcal{W}][m \mapsto 2]) X(l m) \rightsquigarrow^{*}(l 2) 2
$$

Is that wrong?
Depends what you want.
This kind of thing makes the Abadi-Cardelli 'self' variable work. The issue is that λ does not bind - it abstracts.

$$
И X .(\lambda X . X[l \mapsto \mathcal{W}][m \mapsto 2]) .
$$

Then

$$
\begin{aligned}
& (И X . \lambda X . X[l \mapsto \mathcal{W}][m \mapsto 2])[\mathcal{W} \mapsto X] \\
& \rightsquigarrow^{*} И X^{\prime} .\left(\lambda X^{\prime} . X^{\prime}[l \mapsto \mathcal{W}][m \mapsto 2][\mathcal{W} \mapsto X]\right) \\
& \quad \rightsquigarrow^{*} И \text { U }^{\prime} . \lambda X^{\prime} . X^{\prime}[l \mapsto X][m \mapsto 2]
\end{aligned}
$$

и

Apply to $l m$:

$$
\begin{aligned}
& И X^{\prime} .\left(\lambda X^{\prime} . X^{\prime}[l \mapsto X][m \mapsto 2]\right)(l m) \\
& \quad \rightsquigarrow И X^{\prime} .\left(\left(\lambda X^{\prime} . X^{\prime}[l \mapsto X][m \mapsto 2]\right)(l m)\right) \\
& \quad \rightsquigarrow И X^{\prime} . X^{\prime}[l \mapsto X][m \mapsto 2]\left[X^{\prime} \mapsto l m\right] \rightsquigarrow^{*}(X[m \mapsto 2]) 2
\end{aligned}
$$

И behaves like the π-calculus ν; it floats to the top (extrudes scope).

How the different bits fit together

1. λ abstracts - it stays put and β-reduces.
2. $[x \mapsto s]$ substitutes - it floats downwards capturing x until it runs out of term or gets stuck on a stronger variable.
3. $И$ binds - it floats upwards avoiding capture.

Implementation of the untyped λ-calculus

Terms of the untyped λ-calculus:

$$
s::=a|s s| \lambda a . s
$$

quotiented by α-equivalence as usual.
Translation into the NEWcc is:

$$
\llbracket a \rrbracket \equiv a \quad \llbracket s s^{\prime} \rrbracket=\llbracket s \rrbracket \llbracket s^{\prime} \rrbracket \quad \llbracket \lambda a . s \rrbracket=\text { Иa. } \lambda a . \llbracket s \rrbracket .
$$

Theorem: NEWcc reductions simulate λ-calculus reductions, and they preserve strong normalisation.

Reduction rules

$$
\begin{array}{llr}
(\beta) & \left(\lambda a_{i} . s\right) u \rightsquigarrow s\left[a_{i} \mapsto u\right] \\
(\sigma a) & a_{i}\left[a_{i} \mapsto u\right] \rightsquigarrow u \\
(\sigma \#) & s\left[a_{i} \mapsto u\right] \rightsquigarrow s & \\
(\sigma p) & \left(a_{i} t_{1} \ldots t_{n}\right)\left[b_{j} \mapsto u\right] \rightsquigarrow\left(a_{i}\left[b_{j} \mapsto u\right]\right) \ldots\left(t_{n}\left[b_{j} \mapsto u\right]\right) \\
(\sigma \sigma) & s\left[a_{i} \mapsto u\right]\left[b_{j} \mapsto v\right] \rightsquigarrow s\left[b_{j} \mapsto v\right]\left[a_{i} \mapsto u\left[b_{j} \mapsto v\right]\right] & j>i \\
(\sigma \lambda) & \left(\lambda a_{i} . s\right)\left[c_{k} \mapsto u\right] \rightsquigarrow \lambda a_{i} .\left(s\left[c_{k} \mapsto u\right]\right) & a_{i} \# u, c_{k} k \leq i \\
\left(\sigma \lambda^{\prime}\right) & \left(\lambda a_{i} . s\right)\left[b_{j} \mapsto u\right] \rightsquigarrow \lambda a_{i} .\left(s\left[b_{j} \mapsto u\right]\right) & j>i \\
(\sigma t r) & s\left[a_{i} \mapsto a_{i}\right] \rightsquigarrow s & \\
(И p) & \left(И n_{j} . s\right) t \rightsquigarrow И n_{j} .(s t) & n_{j} \notin t \\
(И \lambda) & \lambda a_{i} . И n_{j} . s \rightsquigarrow И n_{j} . \lambda a_{i} . s & n_{j} \neq a_{i} \\
(И \sigma) & \left(И n_{j} . s\right)\left[a_{i} \mapsto u\right] \rightsquigarrow И n_{j} .\left(s\left[a_{i} \mapsto u\right]\right) & n_{j} \notin u n_{j} \neq a_{i} \\
(И \notin) & \text { Иn } n_{j} . s \rightsquigarrow s & n_{j} \notin s
\end{array}
$$

Graphs

Here is a fun NEW calculus of contexts program:

$$
s=\lambda X .((X[x \mapsto y])(X[y \mapsto x])) .
$$

Observe $s(x y) \rightsquigarrow \leadsto^{*}(y y)(x x)$.
Free variables behave like dangling edges in graphs; stronger variables behave like holes.

What is the 'geometry' of a NEWCC term?

Partial evaluation

Write

$$
\begin{gathered}
\text { if }=\lambda a, b, c . a b c \text { true }=\lambda a b . a \text { false }=\lambda a b . b \\
\text { not }=\lambda a . \text { if } a \text { false true } .
\end{gathered}
$$

in untyped λ-calculus. Then calculate

$$
s=\lambda f, a \text {.if } a(f a) a \quad \text { specialised to } \quad s \text { not }
$$

by β-reduction. We obtain λa.if $a(\operatorname{not} a) a$.
A more intelligent method may recognise that the program will always return false (with types etc.).

Partial evaluation

Choose level 1 variables a, b and level 2 variables and B, C and define

$$
\begin{gathered}
\text { true }=\lambda a b . a \text { false }=\lambda a b . b \\
\text { if }=\lambda a, B, C . a(B[a \mapsto \text { true }])(C[a \mapsto \mathrm{false}]) \\
\text { not }=\lambda a . \text { if } a \text { false true } .
\end{gathered}
$$

Partial evaluation

So if we get to $B, a=$ true. Consider

$$
s=\lambda f, a . \text { if } a(f a) a \quad \text { specialised to } \quad s \text { not. }
$$

We obtain:

$$
\begin{aligned}
s \text { not } & \rightsquigarrow^{*} \lambda a \cdot a((\operatorname{not} B)[a \mapsto \operatorname{true}][B \mapsto a])(C[a \mapsto \mathrm{false}][C \mapsto a]) \\
& \rightsquigarrow^{*} \lambda a \cdot a((\operatorname{not} a)[a \mapsto \operatorname{true}])(a[a \mapsto \mathrm{false}]) \\
& \rightsquigarrow^{*} \lambda a \cdot(a \text { false false }) .
\end{aligned}
$$

More efficient!

Other applications

Dynamic (re)binding.

Staged computation. Our calculus is a pure rewrite system. However, a programming language based on it can model staged computation (I think).

Complexity. Can we write more efficient programs?
Geometry. What is a notion of Böhm tree (or similar), in the presence of strong variables?

Types (briefly)

$$
\frac{x: \sigma \in \Gamma \tau \preceq \sigma}{\Gamma \vdash x: \tau} \quad \frac{\Gamma, a_{i}: \tau \vdash s: \tau^{\prime}}{\Gamma \vdash \lambda a_{i} \cdot s: \tau \rightarrow \tau^{\prime}}
$$

$$
\frac{\Gamma \vdash s^{\prime}: \tau^{\prime} \quad \Gamma, a_{i}: \forall \bar{\alpha} \cdot \tau^{\prime} \vdash s: \tau \quad \bar{\alpha}=\operatorname{tyv}\left(\tau^{\prime}\right) \backslash \operatorname{tyv}(\Gamma)}{\Gamma \vdash s\left[a_{i} \mapsto s^{\prime}\right]: \tau}
$$

$$
\frac{\Gamma, n_{j}: \alpha \vdash s: \tau \quad n_{j}, \alpha \notin \Gamma}{\Gamma \vdash И n_{j} . s: \tau} \quad \frac{\Gamma \vdash s: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash t: \tau}{\Gamma \vdash s t: \tau^{\prime}}
$$

Meta-properties

- Confluence.
- Preservation of strong normalisation (for untyped lambda-calculus).
- Hindley-Milner type system. Explicit substitution rule is like that for let.
- Applicative characterisation of contextual equivalence.

Conclusions

With the NEWcc, we really can meta-program.
Scope separate from abstraction; necessary for proper control of α-equivalence in the presence of the hierarchy.

Hierarchy of strengths of variables in common with work by Sato et al. But we have different control of α-equivalence.

Explicit substitution calculus.
Unexpectedly: model of state, unordered datatypes, objects, graphs, and more.

