
Names and variables

Murdoch J. Gabbay, Heriot-Watt University, Scotland

City University, London
Tuesday 27 February 2007

Thanks to Artur Garcez

Names and variables 1



Names

Names are very interesting. They turn up in syntax, for example in

logical predicates such as ∀x.x = x, and in programming languages in

terms such as λx.xx.

I began my research career by (re-)discovering Fraenkel-Mostowski set

theory and observing that it provides a semantic model of

α-equivalence.

Names and variables 2



Names

In Fraenkel-Mostowski I and Andrew Pitts were able to represent

inductive datatypes of parse trees with binding, and extract some really

nice reasoning principles on them.

See equivariance and the Gabbay-Pitts N(‘NEW’) quantifier.

For example Na.φ means ‘φ holds of some fresh a’. We don’t have to

specify what a is fresh for, and that saves mathematicians from

maintaining a context of ‘known names’ in the theory.

Equivariance says that φ(x) if and only if φ((a b)x) where (a b)x is a

and b swapped bijectively in x. This is useful for α-renaming bound

names without losing inductive hypotheses on subtrees of parse trees.

Names and variables 3



Uses of Fraenkel-Mostowski techniques

It’s been very successful:

α-prolog, FreshML, unification (with these names), rewriting (with these

names), nominal logic, one-and-a-halfth-order logic, nominal algebra,

capture-avoiding substitution as a nominal algebra, the NEW calculus of

contexts, hierarchical nominal rewriting, FreshLIB, Scrap Your

Nameplate, a nominal package in Isabelle/HOL, . . .

(not all of this list was done by me!)

. . . and almost certainly more I don’t know about.

Names and variables 4



Uses of Fraenkel-Mostowski techniques

But almost all of the research above has been devoted just to studying

how to manipulate names in abstract syntax.

The underlying denotational model is always parse trees!

But there are many other uses of names.

Names and variables 5



Names in denotation

Names as variable symbols. IMO a variable symbol is a name with a

substitution action.

Names as pointers; a pointer is like a variable symbol, but it’s also a

datum in the language.

Names in linguistics. In the sentence ‘A dog walks. A man sees it.’ the

sentence-fragment ‘A dog’ can be understood as an existentially

quantified variable, but one which can be accessed as a datum and

linked to by later sentences.

Names and variables 6



Names in denotation

Names as existential variables. In the intro-rule for the existential

quantifier
Γ ` P [x7→t]

Γ ` ∃x.P

the t comes ‘out of nowhere’; the rules requires we guess it. This is

obviously a computational nightmare. In fact, the t is an existential

variable.

Names as wires. A name can be used as a wire to express linkage

between different parts of a program. For example ports, IP addresses,

exceptions, or ... just wires.

Names and variables 7



Denotational models

I’m now working to develop a variety of denotational structures in which

names are first-class entities.

So a name is not just something in the syntax — interesting as the

behaviour of these names is, as outlined at the beginning of this talk.

I propose: a name is an actual mathematical entity. Different names,

have different mathematical properties.

Names and variables 8



Why?

Why?

Names and variables 9



Why!

Obviously, because it’s fun.

But also, if we get good denotational models of names then we maybe

we can use them to build new derivation systems and programming

languages. By carefully tuning the properties of this denotational model,

we may be able to derive weaker systems than are currently available.

Weaker system = better computational properties.

Names and variables 10



Why!

Currently there are two options: either a name has no substition action,

or we use full-fledged variables with λ-abstraction. That brings in

function spaces, which are large and computationally intractable.

So for a start, I would like to build classes of denotations of variables

with weak substitution actions; capturing some of the power of function

application, but not too much.

This has already been done using syntactic techniques guided by

algorithmics of calculations such as unification on existing syntax;

higher-order patterns are an example. I will be guided by mathematical

denotation and (probably) develop new syntaxes.

Names and variables 11



Why!

Also, current functional techniques only permit capture-avoiding

substitution.

But in practice other kinds of substitution are useful. For example when

we write

‘let φ be x = x in ∀x.φ’

we expect to get

‘the answer is ∀x.x = x’.

Here x in x = x has been captured by ∀x. This is relevant e.g. in

representing incomplete proofs.

Names and variables 12



Why!

I am very interested in existential variables and am trying to build a logic

with two classes of variables; one for the universally quantified variables,

one for the existentially quantified variables.

Names and variables 13



Machine learning?

Higher-order generalisation is the problem: given t and u find a most

specific v such that there exist terms t′ and u′ such that vt′ = t and

vu′ = u. In that sense, v generalises t and u.

The problem is that functions are a little bit too powerful for this notion to

be as useful as it could be.

It would be nice if we could have some notion of substitution on names

— but without the full computational power of the λ-calculus.

Names and variables 14



Conclusions

I am developing a toolbox of techniques for manipulating names and

variable symbols and fine-tuning their properties in new and very

interesting ways.

The basic tool is an idea: treat names as denotational entities. Then you

can impose just the right set of axioms to get the behaviour you want.

The innovation is to apply the ‘nominal’ treatment of names — originally

developed to specify and manipulate names in parse trees representing

abstract syntax — to structures that are not parse trees; e.g. functions,

sets, and so on.

Names and variables 15


