Names, computations, logics: the hole story

Murdoch J. Gabbay, Heriot-Watt University, Scotland
http://www.gabbay.org.uk

ICMS, Edinburgh, UK
Sunday, 27 May 2007

Thanks

It's a pleasure to be here.
Thanks to the organisers for a lovely dinner last night.

Not maths

I want to talk about some ideas l've been working on.
An overview.
Working alone is crap. I'm a research tart. I'll sleep on a maths problem with anybody.

If you see something you like, let's do it.

Timeline

Fraenkel-Mostowski sets.

The anti-Dale is born!

As James Cheney said this morning, names are real semantic entities.
Names (free variables, in a sense) are the basis of the FM sets universe; $V_{0}=\mathbb{A}, V_{1}=\mathcal{P} V_{0}, \ldots$ Furthermore you can implement binding by a concrete equivalence class of sets: names are not created by binding, binding emerges from names (and concrete sets structure).

$$
[a](a, b)=\{(a,(a, b)),(c,(c, b)),(d,(d, b)), \ldots\}
$$

Significantly 'different' in the sense that atoms a, freshness $a \# x$, and abstraction assume a mathematical foundational status.

Timeline

Nominal terms and unification.
α-equivalence in the presence of meta-variables.

$$
b \# X \vdash[b]((b a) \cdot X)=[a] X .
$$

You still have unification and it's more like first-order unification than higher-order unification.

Note the capturing substitution. Also significantly 'different'; much maths is committed to capture-avoiding substitution.

Timeline

Nominal rewriting.
$(\lambda[a] X) Y \rightarrow X[a \mapsto Y]$.
Sugar for $(\lambda[a] X) Y \rightarrow \operatorname{sub}([a] X, Y)$. sub has its own rewrite rules.
There is still the capturing substitution. But notice something else; λ is a lambda-abstraction (we have β-reduction), but it is also just another term-former.

The reason this can happen is that, in some sense, atoms exist in the denotation for λ to bind.

What denotation? FM sets of course, but more refined semantics are possible. More on that later.

Timeline

Nominal algebra. (Just 'undirected nominal rewriting'.)
Axiomatisation of substitution. A notion of substitution independent of β-equivalence (but which does many of the same things).

Axioms of substitution

$$
\begin{array}{rlrl}
(\mathrm{var} \mapsto) & \vdash & a[a \mapsto T] & =T \\
(\# \mapsto) & a \# X \vdash & X[a \mapsto T] & =X \\
(\mathbf{f} \mapsto) & \vdash \mathrm{f}\left(X_{1}, \ldots, X_{n}\right)[a \mapsto T] & =\mathrm{f}\left(X_{1}[a \mapsto T], \ldots, X_{n}[a \mapsto T]\right) \\
(\mathbf{a b s} \mapsto) & b \# T \vdash & ([b] U)[a \mapsto T] & =[b](U[a \mapsto T]) \\
(\mathbf{r e n} \mapsto) & b \# X \vdash & X[a \mapsto b] & =(b a) \cdot X
\end{array}
$$

Possibly useful as a model for non-standard programming constructs, e.g. calculi of pattern-matching, or pointers.

Timeline

Substitution action on FM sets.
The FM sets universe is itself a model of substitution. That's incredible.
Slogan: a variable is a name with a substitution action - denotationally.
FM atoms are more than a denotational model of names; they are also (with the substitution action) a denotational model of variables. I'll say that again:

- (Analogy:) 'Function' can be viewed as 'graph' and we can build a model in sets using Collection and Pairset and stuff.
- 'Variable' can be viewed as 'name with a substitution action' and we can build a a model in (FM) sets.

Substituting atoms in small sets

If Z is finite just set $Z[a \longmapsto x]=\{z[a \longmapsto x] \mid z \in Z\}$. Easy.
But this fails for \mathbb{A}, because $\mathbb{A}[a \longmapsto b]=\mathbb{A} \backslash\{a\}$ violates $(\# \mapsto)$.
Likewise if $(\mathbb{A} \backslash\{a\})[a \longmapsto b]=\mathbb{A} \backslash\{a\}$ then $a \#(\mathbb{A} \backslash\{a\})[a \longmapsto b]$ fails. But we expect

$$
\operatorname{supp}(z[a \longmapsto x]) \subseteq \operatorname{supp}(z)\{a \longmapsto \operatorname{supp}(x)\}
$$

where

$$
\begin{array}{ll}
S\{a \mapsto T\}=S & \\
\text { if } a \notin S \text { and } \\
S\{a \longmapsto T\}=(S \backslash\{a\}) \cup T & \\
\text { otherwise }
\end{array}
$$

Problem: how do we substitute for the a that is not there?

The key idea

Suppose $A \subseteq \mathbb{A}$ is finite. Write

$$
\operatorname{fix}(A)=\{\pi \mid \forall a \in A \cdot \pi(a)=a\}
$$

fix (A) is the set of permutations π that fix A pointwise.
Write

$$
z \|_{A}=\{\pi z \mid \pi \in \operatorname{fix}(A)\}
$$

For example $\mathbb{A} \backslash\{a\}=b \|_{\{a\}}$.

The key idea

$\mathbb{A} \backslash\{a\}=b \|_{\{a\}}$.
Define

$$
\left(z \|_{S}\right)[a \mapsto x]=(z[a \mapsto x]) \|_{S\{a \mapsto \operatorname{supp}(x)\}}
$$

subject to a bundle of capture-avoidance conditions.

The key idea
$\mathbb{A} \backslash\{a\}=b \|_{\{a\}}$.
Then

$$
\begin{aligned}
(\mathbb{A} \backslash\{a\})[a \mapsto x] & =b[a \mapsto x] \|_{\operatorname{supp}(x)} \\
& =\mathbb{A} .
\end{aligned}
$$

Timeline

Lambda context calculus (LCC).
An idea l've been kicking around since my time in Cambridge. Nominal terms have meta-variables.

I say these meta-variables are not just a convenience. They are real just like any other kind of variable.

A bit of motivation

$$
\frac{A \Rightarrow B \Rightarrow C[A]^{i}}{\frac{B \Rightarrow C}{}} \frac{?}{B}
$$

$$
\frac{A \Rightarrow B \Rightarrow C[A]^{i}}{\frac{B \Rightarrow C}{} \frac{A \Rightarrow B[A]^{i}}{B}}
$$

Capturing substitution necessary for Curry-Howard with incomplete proofs.
(Example borrowed from [Jojgov, TYPES 2002]).

LCC syntax

$s, t::=a_{i}|t t| \lambda a_{i} \cdot t \mid t\left[a_{i} \mapsto t\right]$.
a_{i} has level i.
Define free variables as usual, e.g.

$$
\mathrm{fv}\left(\lambda a_{i} . t\right)=\mathrm{fv}(t) \backslash\left\{a_{i}\right\} .
$$

Let level (t) be the maximum level of any variable in t, free or bound.
Write $a_{i} \# S$ when $a_{i} \notin S$ and if $c_{k} \in S$ then $k \leq i$. So $a_{i} \#\left\{c_{i}\right\}$ and not $a_{i} \#\left\{b_{j}\right\}$ where $j>i$.

LCC reduction rules

$(\beta) \quad\left(\lambda a_{i} . s\right) t \rightarrow s\left[a_{i} \mapsto t\right]$
$(\sigma \mathbf{a}) \quad a_{i}\left[a_{i} \mapsto t\right] \rightarrow t$
$(\sigma \mathrm{fv}) s\left[a_{i} \mapsto t\right] \rightarrow s \quad a_{i} \# \mathrm{fv}(s)$
$(\sigma \mathbf{p}) \quad\left(s s^{\prime}\right)\left[a_{i} \mapsto t\right] \rightarrow\left(s\left[a_{i} \mapsto t\right]\right)\left(s^{\prime}\left[a_{i} \mapsto t\right]\right) \quad$ level $\left(s, s^{\prime}, t\right) \leq i$
$(\sigma \sigma) \quad s\left[a_{i} \mapsto t\right]\left[b_{j} \mapsto u\right] \rightarrow s\left[b_{j} \mapsto u\right]\left[a_{i} \mapsto t\left[b_{j} \mapsto u\right]\right] \quad i<j$
$(\sigma \lambda) \quad\left(\lambda a_{i} \cdot s\right)\left[b_{j} \mapsto u\right] \rightarrow \lambda a_{i} .\left(s\left[b_{j} \mapsto u\right]\right)$
$i<j$
$\left(\sigma \lambda^{\prime}\right) \quad\left(\lambda a_{i} . s\right)\left[c_{i} \mapsto u\right] \rightarrow \lambda a_{i} .\left(s\left[c_{i} \mapsto u\right]\right)$
$a_{i} \# \mathrm{fv}(u)$

LCC

Build a model; whatever metavariables are, they should display these equalities.

Make a higher-order logic out of it; investigate derivation rules.
Use it to model stuff with links. For example, take $R=X[x \mapsto 2][y \mapsto 3]$ and reduce as follows:

$$
\begin{aligned}
(\lambda \mathcal{W} . \mathcal{W}[X \mapsto X[x \mapsto 3]]) R & \xrightarrow{(\beta \sigma),(\sigma \mathrm{a})} \\
& \mathcal{W}[X \mapsto X[x \mapsto 3]][\mathcal{W} \mapsto R] \\
& R[X \mapsto X[x \mapsto 3]]=X[x \mapsto 2][y \mapsto 3][X \mapsto X[x \mapsto 3]] \\
\xrightarrow{(\sigma \sigma)}{ }^{(\sigma \mathrm{a}),(\sigma \mathrm{b})}{ }_{*}^{(\beta)} & X[X \mapsto X[x \mapsto 3]][x \mapsto 2[X \mapsto X[x \mapsto 3]]][y \mapsto 3[X \mapsto X[x \mapsto 3]]] \\
& X[x \mapsto 3][x \mapsto 2][y \mapsto 3] .
\end{aligned}
$$

Other stuff

One-and-a-halfth order logic (stand by for two-and-a-halfth order logic; internalising the $a \# Z$, the \vdash, and the $\forall Z, X$ implicit in something like $a \# Z \vdash Z[a \mapsto X])$.
a-logic (predicate 'isvar' identifies a variable symbol in first-order logic; good for PROLOG).

Hierarchical nominal rewriting (hierarchy of variables; needs a model).
Types for nominal terms (semantics without denotations).

Slogans:

Variables are denotational entities.
Variables have internal structure. They are non-trivial mathematical entities.

There are many name-like entities out there; pointers, variables, patterns, context holes. There's no shortage of potential applications. Benton and Leperchey apply the FM/nominal 'package' to reason on pointers, and develop it further.

Nominal techniques are not solely atoms and inductive datatypes.

Names

Some referees seem to get very unhappy about this. I don't see why.
Gilles Dowek used a new truth-value in his talk. Nobody made a fuss:

- ... but we already have two truth-values, why do we need a third?
- ... hey, I can encode truth-values in numbers anyway!
- ... it's all a special case of fuzzy logic!
- ... truth is a purely meta-level assertion about denotation but has no denotation itself.
- ... the author does not make clear in the paper what 'truth' is.

Let's do a mathematics of names.

