
Names, computations, logics: the hole story

Murdoch J. Gabbay, Heriot-Watt University, Scotland
http://www.gabbay.org.uk

ICMS, Edinburgh, UK
Sunday, 27 May 2007

Names, computations, logics: the hole story 1

Thanks

It’s a pleasure to be here.

Thanks to the organisers for a lovely dinner last night.

Names, computations, logics: the hole story 2

Not maths

I want to talk about some ideas I’ve been working on.

An overview.

Working alone is crap. I’m a research tart. I’ll sleep on a maths problem

with anybody.

If you see something you like, let’s do it.

Names, computations, logics: the hole story 3

Timeline

Fraenkel-Mostowski sets.

The anti-Dale is born!

As James Cheney said this morning, names are real semantic entities.

Names (free variables, in a sense) are the basis of the FM sets

universe; V0 = A, V1 = PV0, . . . Furthermore you can implement

binding by a concrete equivalence class of sets: names are not created

by binding, binding emerges from names (and concrete sets structure).

[a](a, b) = {(a, (a, b)), (c, (c, b)), (d, (d, b)), . . .}.

Significantly ‘different’ in the sense that atoms a, freshness a#x, and

abstraction assume a mathematical foundational status.

Names, computations, logics: the hole story 4

Timeline

Nominal terms and unification.

α-equivalence in the presence of meta-variables.

b#X ⊢ [b]((b a) · X) = [a]X.

You still have unification and it’s more like first-order unification than

higher-order unification.

Note the capturing substitution. Also significantly ‘different’; much maths

is committed to capture-avoiding substitution.

Names, computations, logics: the hole story 5

Timeline

Nominal rewriting.

(λ[a]X)Y → X[a7→Y].

Sugar for (λ[a]X)Y → sub([a]X,Y). sub has its own rewrite rules.

There is still the capturing substitution. But notice something else; λ is a

lambda-abstraction (we have β-reduction), but it is also just another

term-former.

The reason this can happen is that, in some sense, atoms exist in the

denotation for λ to bind.

What denotation? FM sets of course, but more refined semantics are

possible. More on that later.

Names, computations, logics: the hole story 6

Timeline

Nominal algebra. (Just ‘undirected nominal rewriting’.)

Axiomatisation of substitution. A notion of substitution independent of

β-equivalence (but which does many of the same things).

Names, computations, logics: the hole story 7

Axioms of substitution

(var 7→) ⊢ a[a7→T] = T

(#7→) a#X ⊢ X[a7→T] = X

(f 7→) ⊢ f(X1, . . . , Xn)[a7→T] = f(X1[a7→T], . . . , Xn[a7→T])

(abs 7→) b#T ⊢ ([b]U)[a7→T] = [b](U [a7→T])

(ren7→) b#X ⊢ X[a7→b] = (b a) · X

Possibly useful as a model for non-standard programming constructs,

e.g. calculi of pattern-matching, or pointers.

Names, computations, logics: the hole story 8

Timeline

Substitution action on FM sets.

The FM sets universe is itself a model of substitution. That’s incredible.

Slogan: a variable is a name with a substitution action — denotationally.

FM atoms are more than a denotational model of names; they are also

(with the substitution action) a denotational model of variables. I’ll say

that again:

• (Analogy:) ‘Function’ can be viewed as ‘graph’ and we can build a

model in sets using Collection and Pairset and stuff.

• ‘Variable’ can be viewed as ‘name with a substitution action’ and we

can build a a model in (FM) sets.

Names, computations, logics: the hole story 9

Substituting atoms in small sets

If Z is finite just set Z[a7→x] = {z[a7→x] | z ∈ Z}. Easy.

But this fails for A, because A[a7→b] = A \ {a} violates (#7→).

Likewise if (A \ {a})[a7→b] = A \ {a} then a#(A \ {a})[a7→b]
fails. But we expect

supp(z[a7→x]) ⊆ supp(z){a7→supp(x)}

where
S{a7→T} =S if a 6∈ S and

S{a7→T} =(S \ {a}) ∪ T otherwise.

Problem: how do we substitute for the a that is not there?

Names, computations, logics: the hole story 10

The key idea

Suppose A ⊆ A is finite. Write

fix(A) = {π | ∀a ∈ A.π(a) = a}.

fix(A) is the set of permutations π that fix A pointwise.

Write

z||A = {πz | π ∈ fix(A)}.

For example A \ {a} = b||{a}.

Names, computations, logics: the hole story 11

The key idea

A \ {a} = b||{a}.

Define

(z||S)[a7→x] = (z[a7→x])||S{a 7→supp(x)}

subject to a bundle of capture-avoidance conditions.

Names, computations, logics: the hole story 12

The key idea

A \ {a} = b||{a}.

Then
(A \ {a})[a7→x] = b[a7→x]||supp(x)

= A.

Names, computations, logics: the hole story 13

Timeline

Lambda context calculus (LCC).

An idea I’ve been kicking around since my time in Cambridge. Nominal

terms have meta-variables.

I say these meta-variables are not just a convenience. They are real —

just like any other kind of variable.

Names, computations, logics: the hole story 14

A bit of motivation

A⇒B⇒C [A]i

B⇒C

?

B

C
i

A⇒C

A⇒B⇒C [A]i

B⇒C

A⇒B [A]i

B

C
i

A⇒C

Capturing substitution necessary for Curry-Howard with incomplete

proofs.

(Example borrowed from [Jojgov, TYPES 2002]).

Names, computations, logics: the hole story 15

LCC syntax

s, t ::= ai | tt | λai.t | t[ai 7→t].

ai has level i.

Define free variables as usual, e.g.

fv(λai.t) = fv(t) \ {ai}.

Let level(t) be the maximum level of any variable in t, free or bound.

Write ai#S when ai 6∈ S and if ck ∈ S then k ≤ i. So ai#{ci} and

not ai#{bj} where j > i.

Names, computations, logics: the hole story 16

LCC reduction rules

(β) (λai.s)t → s[ai 7→t]

(σa) ai[ai 7→t] → t

(σfv) s[ai 7→t] → s ai#fv(s)

(σp) (ss′)[ai 7→t] → (s[ai 7→t])(s′[ai 7→t]) level(s, s′, t) ≤ i

(σσ) s[ai 7→t][bj 7→u] → s[bj 7→u][ai 7→t[bj 7→u]] i < j

(σλ) (λai.s)[bj 7→u] → λai.(s[bj 7→u]) i < j

(σλ′) (λai.s)[ci 7→u] → λai.(s[ci 7→u]) ai#fv(u)

Names, computations, logics: the hole story 17

LCC

Build a model; whatever metavariables are, they should display these

equalities.

Make a higher-order logic out of it; investigate derivation rules.

Use it to model stuff with links. For example, take R = X[x7→2][y 7→3]
and reduce as follows:

(λW.W[X 7→X[x7→3]]) R
(β)

−→ W[X 7→X[x7→3]][W7→R]
(σσ), (σa)

−→∗ R[X 7→X[x7→3]] = X[x7→2][y 7→3][X 7→X[x7→3]]
(σσ)

−→∗ X[X 7→X[x7→3]][x7→2[X 7→X[x7→3]]][y 7→3[X 7→X[x7→3]]]
(σa), (σb)

−→∗ X[x7→3][x7→2][y 7→3].

Names, computations, logics: the hole story 18

Other stuff

One-and-a-halfth order logic (stand by for two-and-a-halfth order logic;

internalising the a#Z , the ⊢, and the ∀Z,X implicit in something like

a#Z ⊢ Z[a7→X]).

a-logic (predicate ‘isvar’ identifies a variable symbol in first-order logic;

good for PROLOG).

Hierarchical nominal rewriting (hierarchy of variables; needs a model).

Types for nominal terms (semantics without denotations).

Names, computations, logics: the hole story 19

Slogans:

Variables are denotational entities.

Variables have internal structure. They are non-trivial mathematical

entities.

There are many name-like entities out there; pointers, variables,

patterns, context holes. There’s no shortage of potential applications.

Benton and Leperchey apply the FM/nominal ‘package’ to reason on

pointers, and develop it further.

Nominal techniques are not solely atoms and inductive datatypes.

Names, computations, logics: the hole story 20

Names

Some referees seem to get very unhappy about this. I don’t see why.

Gilles Dowek used a new truth-value in his talk. Nobody made a fuss:

• . . . but we already have two truth-values, why do we need a third?

• . . . hey, I can encode truth-values in numbers anyway!

• . . . it’s all a special case of fuzzy logic!

• . . . truth is a purely meta-level assertion about denotation but has no

denotation itself.

• . . . the author does not make clear in the paper what ‘truth’ is.

Let’s do a mathematics of names.

Names, computations, logics: the hole story 21

