Names, computations, logics: the hole story

Murdoch J. Gabbay, Heriot-Watt University, Scotland
http://www.gabbay.org.uk

ICMS, Edinburgh, UK
Sunday, 27 May 2007

Names, computations, logics: the hole story

Thanks

It's a pleasure to be here.

Thanks to the organisers for a lovely dinner last night.

Names, computations, logics: the hole story

Not maths

| want to talk about some ideas I've been working on.

An overview.

Working alone is crap. I'm a research tart. I'll sleep on a maths problem
with anybody.

If you see something you like, let’'s do it.

Names, computations, logics: the hole story

Timeline
Fraenkel-Mostowski sets.
The anti-Dale is born!
As James Cheney said this morning, names are real semantic entities.

Names (free variables, in a sense) are the basis of the FM sets
universe; Vo = A, V7 = PV}, ... Furthermore you can implement
binding by a concrete equivalence class of sets: names are not created
by binding, binding emerges from names (and concrete sets structure).

al(a,b) = {(a, (a,b)), (¢, (¢,b)), (d,(d,D)), ...}.

Significantly ‘different’ in the sense that atoms a, freshness a#tx, and
abstraction assume a mathematical foundational status.

Names, computations, logics: the hole story

Timeline

Nominal terms and unification.

-equivalence in the presence of meta-variables.
b#X F [b]((ba) - X) = [a] X.

You still have unification and it's more like first-order unification than
higher-order unification.

Note the capturing substitution. Also significantly ‘different’; much maths
IS committed to capture-avoiding substitution.

Names, computations, logics: the hole story

Timeline

Nominal rewriting.
(Aa]X)Y — X|a—Y].
Sugar for (Ala] X)Y — sub(|a]X,Y). sub has its own rewrite rules.

There is still the capturing substitution. But notice something else; A is a
lambda-abstraction (we have (3-reduction), but it is also just another
term-former.

The reason this can happen is that, in some sense, atoms exist in the
denotation for A\ to bind.

What denotation? FM sets of course, but more refined semantics are
possible. More on that later.

Names, computations, logics: the hole story

Timeline

Nominal algebra. (Just ‘undirected nominal rewriting’.)

Axiomatisation of substitution. A notion of substitution independent of
(3-equivalence (but which does many of the same things).

Names, computations, logics: the hole story

Axioms of substitution

(var—) - ala—T]) =T

(#+—) a#X Xla—T] = X

(fi—) - f(Xq,..., Xn)|a—T] = f{(Xi|la—T], ..., Xyla—T))
(abs—) bHT F () a—T] = [B)(Ufa—T))
(ren—) b#X F Xla—bl = (ba)- X

Possibly useful as a model for non-standard programming constructs,
e.g. calculi of pattern-matching, or pointers.

Names, computations, logics: the hole story 8

Timeline

Substitution action on FM sets.
The FM sets universe is itself a model of substitution. That’s incredible.
Slogan: a variable is a name with a substitution action — denotationally.

FM atoms are more than a denotational model of names; they are also
(with the substitution action) a denotational model of variables. I'll say
that again:

e (Analogy:) ‘Function’ can be viewed as ‘graph’ and we can build a
model in sets using Collection and Pairset and stuff.

e ‘Variable’ can be viewed as ‘name with a substitution action’ and we
can build a a model in (FM) sets.

Names, computations, logics: the hole story

Substituting atoms in small sets

If Z is finite just set Z |a—x| = {z|a—x| | z € Z}. Easy.
But this fails for A, because A[a—b] = A\ {a} violates (#+—).
Likewise if (A \ {a})la—b] = A\ {a} then a#(A \ {a})[ar—b]

fails. But we expect

supp(z[a—x]) C supp(z){a—supp(x)}

where

S{a—T} =S ifa ¢ .S and
S{a—T} =(5\{a})UT otherwise.

Problem: how do we substitute for the a that is not there?

Names, computations, logics: the hole story 10

The key idea

Suppose A C A is finite. Write
fix(A) = {m |Va € Aw(a) = a}.
fix(A) is the set of permutations 7 that fix A pointwise.

Write
2|la =A{mz | m e fix(A)}.

For example A \ {a} = b| {41

Names, computations, logics: the hole story

11

The key idea

A\ {a} = bl {a}.

Define
(z]s)|a—z] = (zla—x])| s {asupp(a)}

subject to a bundle of capture-avoidance conditions.

Names, computations, logics: the hole story

12

The key idea

A\{a} = b|{a-
Then
(A\{a})|a—z] = bla—z]|supp(x)
= A.

Names, computations, logics: the hole story

13

Timeline

Lambda context calculus (LCC).

An idea I've been kicking around since my time in Cambridge. Nominal
terms have meta-variables.

| say these meta-variables are not just a convenience. They are real —
just like any other kind of variable.

Names, computations, logics: the hole story

14

A bit of motivation

A=B=C [A]’
B=C

;
B

C
A=C

(

A=B=C [A]" A=B [A]’

B=C B
C 7
A=C

Capturing substitution necessary for Curry-Howard with incomplete

proofs.

(Example borrowed from [Jojgov, TYPES 2002]).

Names, computations, logics: the hole story

15

LCC syntax

s, tu=a; | tt| Aa;.t | tla;—t].
a; has level 1.

Define free variables as usual, e.g.

fv(Aa;.t) = fv(t) \ {a;}.
Let level(t) be the maximum level of any variable in t, free or bound.

Write a;#.S when a; € S and if ¢, € S then k < 4. So a;#{c; } and
not a;#{b; } where j > 1.

Names, computations, logics: the hole story

16

LCC reduction rules

3) (Aa;.s)t — s|a;—t]
ca) a;la;—t] —t

fv) sla;—t] — s

Q

(s5")ai—t] — (slai—=t])(s"[ai—1])

Q

p

Q

O\

)
o) slap—t]|bjou] — s|bjoullai—tbyji—ul]
)

(Aa;.s)[bj—u] — Aa;.(s[bj—ul)

(
(
(
(
(
(
(

o) (Aa;.s)|ci—ul — Aa;.(s|ci—ul)

Names, computations, logics: the hole story

a;#fv(s)
level(s, s’,t) < i
1< J

1< J

a;F#fv(u)

17

LCC

Build a model; whatever metavariables are, they should display these
equalities.

Make a higher-order logic out of it; investigate derivation rules.

Use it to model stuff with links. For example, take R = X [z+—2][y— 3]
and reduce as follows:

(MWW[X—X[z—3]]) R — W[X—X[z—3]|[W—R]
— R X—X|z—3]] = X|z—2][y—3||[X— X |r—3]]
— XX X[z=3]][r—=2[X = Xz 3]]][y—3[X — X[z—3]]
5 X[a—3)[z—2][y—3).

Names, computations, logics: the hole story 18

Other stuff

One-and-a-halfth order logic (stand by for two-and-a-halfth order logic;
internalising the a# Z, the -, and the VZ, X implicit in something like
a#Z - Zla—X)).

a-logic (predicate ‘isvar’ identifies a variable symbol in first-order logic;
good for PROLOG).

Hierarchical nominal rewriting (hierarchy of variables; needs a model).

Types for nominal terms (semantics without denotations).

Names, computations, logics: the hole story

19

Slogans:

Variables are denotational entities.

Variables have internal structure. They are non-trivial mathematical
entities.

There are many name-like entities out there; pointers, variables,
patterns, context holes. There’s no shortage of potential applications.
Benton and Leperchey apply the FM/nominal ‘package’ to reason on
pointers, and develop it further.

Nominal techniques are not solely atoms and inductive datatypes.

Names, computations, logics: the hole story 20

Names
Some referees seem to get very unhappy about this. | don’t see why.

Gilles Dowek used a new truth-value in his talk. Nobody made a fuss:
e ...but we already have two truth-values, why do we need a third?
® ...hey, | can encode truth-values in numbers anyway!

e ...it's all a special case of fuzzy logic!

e ...truth is a purely meta-level assertion about denotation but has no
denotation itself.

e ...the author does not make clear in the paper what ‘truth’ is.

Let's do a mathematics of names.

Names, computations, logics: the hole story

21

