a-logic with arrows

Murdoch J. Gabbay, Heriot-Watt University, Scotland

WFLP, RDP, Paris
Monday, 24 June 2007

Joint work with Michael Gabbay, King's College, London

a-logic

Your mission is to axiomatise substitution, the λ-calculus, and first- (or higher-)order logic.

Your tool is first-order logic.
Go!

a-logic

Why is my mission to axiomatise substitution, the λ-calculus, and first(or higher-)order logic?

Because they're at the heart of logic and programming.
You can do unification too, if you like.

Axioms of substitution

Axioms for substitution in first-order logic should look something like this:

$$
\begin{gathered}
x[x:=y]=y \quad x \neq y \Rightarrow y[x:=z]=y \\
f\left(x_{1}, \ldots, x_{n}\right)[x:=y]=f\left(x_{1}[x:=y], \ldots, x_{n}[x:=y]\right)
\end{gathered}
$$

Here x, y, z, x_{i} are variables.

Axioms for substitution

$=$ is equality.
Now there is a problem.
' $x \neq y$ ' in

$$
x \neq y \Rightarrow y[x:=z]=y
$$

means that the values of x and y are not equal, and that's not what we meant when we wrote ' $x \neq y$ '.

So introduce a predicate at and let at (t) mean intuitively ' t is a variable and it has not been associated to a value'.

That is, read at (t) as ' t is a variable symbol'.

Inference rule for at

$$
\frac{[t \text { not a variable }]}{\Gamma, \text { at } t \vdash \Delta}(\text { at } \mathbf{L})
$$

Here is a valid derivation:

$$
\overline{\text { at }(2) \vdash 2+2=3}(\text { at } \mathbf{L})
$$

Axioms for substitution

Assume a ternary term-former $s\langle u \mapsto t\rangle$ explicit substitution and a binary predicate $\#$ freshness. Axioms are:
$a \# s$
at a
at a
at $a \wedge b \# s$
at $b \wedge a \# b \wedge a \# v \Rightarrow s\langle a \longmapsto u\rangle\langle b \mapsto v\rangle=s\langle b \mapsto v\rangle\langle a \mapsto u\langle b \mapsto v\rangle\rangle$

Denotations

at is a unary predicate. The denotation of a unary predicate is uncontroversial; it identifies a subclass of the domain.

An easy denotation for a-logic is just a first-order structure; a set with elements and a subset of that to interpret at . It's not hard.

We hypothesise term-formers such as $s\langle a \longmapsto t\rangle$ and $a \# s$, and λ and whatever else pleases us, and write axioms for them.

A model is a first-order structure with functions, and stuff, to interpret the term-formers and predicates, and stuff. The usual story.

A catch

NOT.

Assume at a and consider $a\langle a \longmapsto a\rangle$.
We can prove $a=a\langle a \longmapsto a\rangle$. Traditionally equal things can be interchanged freely.

We assumed at a. Do we want at $(a\langle a \mapsto a\rangle)$?
No we do not; it is not a variable symbol - the top-level term-formers is explicit substitution. We can use (at L).
(Later when we study the λ-calculus, we also have at $((\lambda a . a) a)$; the issue is not with substitution itself.)

A catch

Inference rules should be syntax-directed and give meaning to connectives independently of axioms. (at L) does that.

This is incompatible with the usual treatment of equality, which can replace a term without a top-level term-former (a variable) with a term with a top-level term-former.

A solution

Orient equality:

$$
\text { at } a \Rightarrow a\langle a \longmapsto a\rangle \rightsquigarrow a .
$$

Think of this as a reduction relation. Call it ayquality.
Now at $(a\langle a \longmapsto a\rangle)$ can be false and at (a) can be true, and this is not a problem.

Inference rules

$$
\begin{gathered}
\frac{\Gamma, P \vdash Q, \Delta}{\Gamma \vdash P \Rightarrow Q, \Delta}(\Rightarrow \mathbf{R}) \quad \frac{\Gamma \vdash P, \Delta \quad \Gamma, Q \vdash \Delta}{\Gamma, P \Rightarrow Q \vdash \Delta}(\Rightarrow \mathbf{L}) \\
\frac{\Gamma, P \vdash P, \Delta}{}(\mathbf{A} \mathbf{x}) \frac{}{\Gamma, \perp \vdash \Delta}(\perp \mathbf{L}) \frac{\Gamma \vdash P, \Delta \quad \Gamma, P \vdash \Delta}{\Gamma \vdash \Delta}(\mathbf{C u t}) \\
\frac{\Gamma \vdash P, \Delta \quad[a \notin \Gamma, \Delta]}{\Gamma \vdash \forall a \cdot P, \Delta}(\forall \mathbf{R}) \quad \frac{\Gamma, P[a:=t] \vdash \Delta}{\Gamma, \forall a \cdot P \vdash \Delta}(\forall \mathbf{L})
\end{gathered}
$$

Inference rules

$$
\begin{gathered}
\frac{[t \text { not a variable }]}{\Gamma, \text { at } t \vdash \Delta}(\text { at } \mathbf{L}) \quad \frac{\Gamma, \text { at } a \vdash \Delta \quad[a \notin \Gamma, \Delta]}{\Gamma \vdash \Delta}(\text { Fresh }) \\
\frac{\Gamma \vdash t \rightsquigarrow t, \Delta}{\Gamma}(\rightsquigarrow \mathbf{R}) \\
\frac{\Gamma, p(t s)[a:=s] \vdash \Delta \quad[a \downarrow p(t s)]}{\Gamma, s^{\prime} \rightsquigarrow s, p(t s)\left[a:=s^{\prime}\right] \vdash \Delta}(\rightsquigarrow \mathbf{L} \downarrow) \\
\frac{\Gamma, p(t s)\left[a:=s^{\prime}\right] \vdash \Delta \quad[a \uparrow p(t s)]}{\Gamma, s^{\prime} \rightsquigarrow s, p(t s)[a:=s] \vdash \Delta}(\rightsquigarrow \mathbf{L} \uparrow)
\end{gathered}
$$

Arrowdown and arrowup

Once we orient equality we have to worry about whether an instance of the term occurs in positive or negative position.

Suppose that $s \rightsquigarrow t$ and $P[a:=s]$ implies $P[a:=t]$ as a result.
Then $P[a:=t] \Rightarrow Q$ implies $P[a:=s] \Rightarrow Q$.
So we have to keep track of positive and negative positions.

Arrowdown and arrowup

We must do this also at the level of terms.
If $t \rightsquigarrow t^{\prime}$ and $s \rightsquigarrow t$ then $s \rightsquigarrow t^{\prime}$. The right-hand side of \rightsquigarrow is positive.
If $t \rightsquigarrow t^{\prime}$ and $t^{\prime} \rightsquigarrow u$ then $t \rightsquigarrow u$. The left-hand side of \rightsquigarrow is negative.
So term-formers take an arity which is not just a number, but a list of directions.

The arity of \rightsquigarrow is (\uparrow, \downarrow).
The arity of at is (\downarrow).

Arrowdown and arrowup

Define $a \uparrow P, a \downarrow P$, and $a \circlearrowleft P$ by:

$$
\begin{gathered}
\frac{a \circlearrowleft P}{a \uparrow P} \frac{a \circlearrowleft P}{a \downarrow P} \\
\frac{a \uparrow P a \downarrow Q}{a \downarrow(P \Rightarrow Q)} \frac{a \downarrow P a \uparrow Q}{a \uparrow(P \Rightarrow Q)} \frac{a \circlearrowleft P a \circlearrowleft Q}{a \circlearrowleft(P \Rightarrow Q)} \\
\frac{a \uparrow P}{a \uparrow \forall a \cdot P} \frac{a \downarrow P}{a \downarrow \forall a . P} \frac{a \circlearrowleft P}{a \circlearrowleft \forall a . P}
\end{gathered}
$$

Our axioms, again

$a \# s$
at a
at a
at $a \wedge b \# s$
at $b \wedge a \# b \wedge a \# v \quad \Rightarrow \quad s\langle a \mapsto u\rangle\langle b \mapsto v\rangle \rightsquigarrow s\langle b \mapsto v\rangle\langle a \mapsto u\langle b \mapsto v\rangle\rangle$

Shallow embedding

at $a \wedge b \# s \Rightarrow \lambda a . s=\lambda b . s\langle a \longmapsto b\rangle \quad$ at $a \Rightarrow(\lambda a . s) \cdot t \rightsquigarrow s\langle a \longmapsto t\rangle$.

So the λ-calculus can be embedded in a-logic with arrows.
This is not a deep embedding; the notion of equality is not syntactic identity, or even α-equivalence.

It is a shallow embedding. Terms are ayqual up to $\alpha \beta$-equivalence.

What is really going on here?

We are trying to reconcile the difference between syntactic identity and semantic identity.

Usually this is handled by types:
Expr $\rightarrow \mathbb{N}$ for an evaluation function, for example. Prop is a type of propositions, o is a type of truth-values representing the denotation of elements in Prop, for example.

Somehow, the property of 'being a variable' doesn't sit terribly well with types.

What is really going on here?

a-logic internalises just enough of this property to give reasonably sensible shallow embeddings. Interestingly a notion of reduction is forced on us.

This is not a finished work. There is much to explore. (See my other papers.)

