a-logic with arrows

Murdoch J. Gabbay, Heriot-Watt University, Scotland

WFLP, RDP, Paris
Monday, 24 June 2007

Joint work with Michael Gabbay, King’s College, London

a-logic with arrows

a-logic

Your mission is to axiomatise substitution, the A-calculus,
and first- (or higher-)order logic.

Your tool is first-order logic.
Go!

a-logic with arrows

a-logic

Why is my mission to axiomatise substitution, the A-calculus, and first-
(or higher-)order logic?

Because they're at the heart of logic and programming.

You can do unification too, if you like.

a-logic with arrows

Axioms of substitution

Axioms for substitution in first-order logic should look something like this:
rle=y|] =y r#Y = ylri=z] =y

f(xy,...,xn)|x:=y] = f(z1]|x:=Y], ..., T0]x:=Y])

Here x, vy, 2, x; are variables.

a-logic with arrows

Axioms for substitution

— Is equality.
Now there is a problem.
‘r £ 1 in
r7Y = ylri=z =y

means that the values of x and y are not equal, and that’s not what we
meant when we wrote ‘x # 1/,

So introduce a predicate at and let at(¢) mean intuitively ‘t is a variable
and it has not been associated to a value'.

That is, read at(t) as ‘¢ is a variable symbol’.

a-logic with arrows

Inference rule for at

|t not a variable]

['att - A

(at L)

Here is a valid derivation:

at(2)|—2+2:3(atL)

a-logic with arrows

Axioms for substitution

Assume a ternary term-former s(u—t) explicit substitution and a
binary predicate # freshness. Axioms are:

a#s
at a

at a
at a N\ b#s

<~
=
=
=

atb N\ a#b AN at#v =

a-logic with arrows

ata N Vi.s(a—t) =s

a—a) = S

a—S) = S

a—b) (b—t) = s(art)

a—u)(b—v) = s(b—v)(a—u{b—v))

Denotations

at is a unary predicate. The denotation of a unary predicate is
uncontroversial; it identifies a subclass of the domain.

An easy denotation for a-logic is just a first-order structure; a set with
elements and a subset of that to interpret at . It's not hard.

We hypothesise term-formers such as s(a+—t) and a#s, and X and
whatever else pleases us, and write axioms for them.

A model is a first-order structure with functions, and stuff, to interpret the
term-formers and predicates, and stuff. The usual story.

a-logic with arrows

A catch

NOT.

Assume at a and consider a{ar—a) .

We can prove a = a{ar—>a>. Traditionally equal things can be
iInterchanged freely.

We assumed at a. Do we want at (a(a—a))?

No we do not; it is not a variable symbol — the top-level term-formers is
explicit substitution. We can use (at LL).

(Later when we study the A-calculus, we also have at ((A\a.a)a); the
ISsue is not with substitution itself.)

a-logic with arrows

A catch

Inference rules should be syntax-directed and give meaning to
connectives independently of axioms. (at L) does that.

This is incompatible with the usual treatment of equality, which can
replace a term without a top-level term-former (a variable) with a term

with a top-level term-former.

a-logic with arrows

10

A solution

Orient equality:
at a = a(a—a) ~ a.

Think of this as a reduction relation. Call it ayguality.

Now at (a(a+—a)) can be false and at (a) can be true, and this is not
a problem.

a-logic with arrows

11

Inference rules

I''PFHQ,A I'-P,A T'"QFA
(= R) (= L)
I'-P=(Q,A I''P=QFA

rFPA T.PFA
Ax 1L ’ ’
F,PHD,A() F,LI—A() Y (Cut)

'-PA [agl, A [, Pla:=t| - A
(VR) (VL)
['-Va.P,A [''Va.PF A

a-logic with arrows 12

Inference rules

[t not a variable]

I'ata F A

a &1, A

(at L)
I'att & A

' Et~t A

[, p(ts)|a:=s] H A

(Fresh)
' A

(~R)

[alp(ts)]

I', s ~ s, p(ts)[a:=s"]

I, p(ts)[a:=s"] = A

Y (~Ll)

alp(ts)]

(~LT)

[, s~ s, p(ts)[a:=s] F A

a-logic with arrows

13

Arrowdown and arrowup

Once we orient equality we have to worry about whether an instance of
the term occurs in positive or negative position.

Suppose that s ~ t and P|a:=s]| implies P|a:=t| as a result.
Then Pla:=t] = @ implies Pla:=s] = Q.

So we have to keep track of positive and negative positions.

a-logic with arrows

14

Arrowdown and arrowup

We must do this also at the level of terms.
Ift ~~ t' and s ~ ¢ then s ~» t’. The right-hand side of ~~ is positive.
Ift ~ t" and t’ ~ w then ¢t ~> u. The left-hand side of ~~ is negative.

So term-formers take an arity which is not just a number, but a list of
directions.

The arity of ~~ is (T, |).
The arity of at is (]).

a-logic with arrows

15

Arrowdown and arrowup

Define aTP, a| P, and aOP by:
aOP aOP
alP a|P

alP al@ alP al@Q aOP aOQ

al(P=Q) al(P=Q) aO(P=Q)

alP alP aOP
alVa.P alVa.P aOVa.P

a-logic with arrows

16

Our axioms, again

a#s
at a

at a
at a N b#s
at b A\ a#b N\ a#v

a-logic with arrows

L

ata N Vt.s(a—t) ~ s

5

<
5
<

a—a) ~> S

a{ar—s) ~

a—b) <th> ~ s{ar—t)

s(ar—u) (b—v) ~~ s(b—v){(a—u{b—v))

17

Shallow embedding

ata A b#s = a.s = A\b.s(a—b) ata = (la.s)t ~ s(a—t).

So the A-calculus can be embedded in a-logic with arrows.

This is not a deep embedding; the notion of equality is not syntactic
identity, or even «x-equivalence.

It is a shallow embedding. Terms are ayqual up to o(3-equivalence.

a-logic with arrows 18

What is really going on here?

We are trying to reconcile the difference between syntactic identity and
semantic identity.

Usually this is handled by types:

Expr — N for an evaluation function, for example. Prop is a type of

propositions, o is a type of truth-values representing the denotation of
elements in Prop, for example.

Somehow, the property of ‘being a variable’ doesn’t sit terribly well with
types.

a-logic with arrows 19

What is really going on here?

a-logic internalises just enough of this property to give reasonably
sensible shallow embeddings. Interestingly a notion of reduction is
forced on us.

This is not a finished work. There is much to explore. (See my other
papers.)

a-logic with arrows

20

