
a-logic with arrows

Murdoch J. Gabbay, Heriot-Watt University, Scotland

WFLP, RDP, Paris
Monday, 24 June 2007

Joint work with Michael Gabbay, King’s College, London

a-logic with arrows 1

a-logic

Your mission is to axiomatise substitution, the λ-calculus,
and first- (or higher-)order logic.

Your tool is first-order logic.

Go!

a-logic with arrows 2

a-logic

Why is my mission to axiomatise substitution, the λ-calculus, and first-

(or higher-)order logic?

Because they’re at the heart of logic and programming.

You can do unification too, if you like.

a-logic with arrows 3

Axioms of substitution

Axioms for substitution in first-order logic should look something like this:

x[x:=y] = y x6=y ⇒ y[x:=z] = y

f(x1, . . . , xn)[x:=y] = f(x1[x:=y], . . . , xn[x:=y])

Here x, y, z, xi are variables.

a-logic with arrows 4

Axioms for substitution

= is equality.

Now there is a problem.

‘x 6= y’ in

x6=y ⇒ y[x:=z] = y

means that the values of x and y are not equal, and that’s not what we

meant when we wrote ‘x 6= y’.

So introduce a predicate at and let at(t) mean intuitively ‘t is a variable

and it has not been associated to a value’.

That is, read at(t) as ‘t is a variable symbol’.

a-logic with arrows 5

Inference rule for at

[t not a variable]
(atL)

Γ, at t ⊢ ∆

Here is a valid derivation:

(atL)
at (2) ⊢ 2 + 2 = 3

a-logic with arrows 6

Axioms for substitution

Assume a ternary term-former s〈u7→t〉 explicit substitution and a

binary predicate # freshness. Axioms are:

a#s ⇔ at a ∧ ∀t.s〈a7→t〉 = s

at a ⇒ s〈a7→a〉 = s

at a ⇒ a〈a7→s〉 = s

at a ∧ b#s ⇒ s〈a7→b〉〈b 7→t〉 = s〈a7→t〉

at b ∧ a#b ∧ a#v ⇒ s〈a7→u〉〈b 7→v〉 = s〈b 7→v〉〈a7→u〈b 7→v〉〉

a-logic with arrows 7

Denotations

at is a unary predicate. The denotation of a unary predicate is

uncontroversial; it identifies a subclass of the domain.

An easy denotation for a-logic is just a first-order structure; a set with

elements and a subset of that to interpret at . It’s not hard.

We hypothesise term-formers such as s〈a7→t〉 and a#s, and λ and

whatever else pleases us, and write axioms for them.

A model is a first-order structure with functions, and stuff, to interpret the

term-formers and predicates, and stuff. The usual story.

a-logic with arrows 8

A catch

NOT.
Assume at a and consider a〈a7→a〉 .

We can prove a = a〈a7→a〉. Traditionally equal things can be

interchanged freely.

We assumed at a. Do we want at (a〈a7→a〉)?

No we do not; it is not a variable symbol — the top-level term-formers is

explicit substitution. We can use (atL).

(Later when we study the λ-calculus, we also have at ((λa.a)a); the

issue is not with substitution itself.)

a-logic with arrows 9

A catch

Inference rules should be syntax-directed and give meaning to

connectives independently of axioms. (atL) does that.

This is incompatible with the usual treatment of equality, which can

replace a term without a top-level term-former (a variable) with a term

with a top-level term-former.

a-logic with arrows 10

A solution

Orient equality:

at a ⇒ a〈a7→a〉 a.

Think of this as a reduction relation. Call it ayquality.

Now at (a〈a7→a〉) can be false and at (a) can be true, and this is not

a problem.

a-logic with arrows 11

Inference rules

Γ, P ⊢ Q,∆
(⇒ R)

Γ ⊢ P ⇒ Q,∆

Γ ⊢ P,∆ Γ, Q ⊢ ∆
(⇒ L)

Γ, P ⇒ Q ⊢ ∆

(Ax)
Γ, P ⊢ P,∆

(⊥L)
Γ,⊥ ⊢ ∆

Γ ⊢ P,∆ Γ, P ⊢ ∆
(Cut)

Γ ⊢ ∆

Γ ⊢ P,∆ [a 6∈ Γ,∆]
(∀R)

Γ ⊢ ∀a.P,∆

Γ, P [a:=t] ⊢ ∆
(∀L)

Γ,∀a.P ⊢ ∆

a-logic with arrows 12

Inference rules

[t not a variable]
(atL)

Γ, at t ⊢ ∆

Γ, at a ⊢ ∆ [a 6∈ Γ, ∆]
(Fresh)

Γ ⊢ ∆

(R)
Γ ⊢ t t, ∆

Γ, p(ts)[a:=s] ⊢ ∆ [a↓p(ts)]
(L↓)

Γ, s′ s, p(ts)[a:=s′] ⊢ ∆

Γ, p(ts)[a:=s′] ⊢ ∆ [a↑p(ts)]
(L↑)

Γ, s′ s, p(ts)[a:=s] ⊢ ∆

a-logic with arrows 13

Arrowdown and arrowup

Once we orient equality we have to worry about whether an instance of

the term occurs in positive or negative position.

Suppose that s t and P [a:=s] implies P [a:=t] as a result.

Then P [a:=t] ⇒ Q implies P [a:=s] ⇒ Q.

So we have to keep track of positive and negative positions.

a-logic with arrows 14

Arrowdown and arrowup

We must do this also at the level of terms.

If t t′ and s t then s t′. The right-hand side of is positive.

If t t′ and t′ u then t u. The left-hand side of is negative.

So term-formers take an arity which is not just a number, but a list of

directions.

The arity of is (↑, ↓).

The arity of at is (↓).

a-logic with arrows 15

Arrowdown and arrowup

Define a↑P , a↓P , and a	P by:

a	P

a↑P

a	P

a↓P

a↑P a↓Q

a↓(P⇒Q)

a↓P a↑Q

a↑(P⇒Q)

a	P a	Q

a	(P⇒Q)

a↑P

a↑∀a.P

a↓P

a↓∀a.P

a	P

a	∀a.P

a-logic with arrows 16

Our axioms, again

a#s ⇔ at a ∧ ∀t.s〈a7→t〉 s

at a ⇒ s〈a7→a〉 s

at a ⇒ a〈a7→s〉 s

at a ∧ b#s ⇒ s〈a7→b〉〈b 7→t〉 s〈a7→t〉

at b ∧ a#b ∧ a#v ⇒ s〈a7→u〉〈b 7→v〉 s〈b 7→v〉〈a7→u〈b 7→v〉〉

a-logic with arrows 17

Shallow embedding

at a ∧ b#s ⇒ λa.s = λb.s〈a7→b〉 at a ⇒ (λa.s)·t s〈a7→t〉.

So the λ-calculus can be embedded in a-logic with arrows.

This is not a deep embedding; the notion of equality is not syntactic

identity, or even α-equivalence.

It is a shallow embedding. Terms are ayqual up to αβ-equivalence.

a-logic with arrows 18

What is really going on here?

We are trying to reconcile the difference between syntactic identity and

semantic identity.

Usually this is handled by types:

Expr → N for an evaluation function, for example. Prop is a type of

propositions, o is a type of truth-values representing the denotation of

elements in Prop, for example.

Somehow, the property of ‘being a variable’ doesn’t sit terribly well with

types.

a-logic with arrows 19

What is really going on here?

a-logic internalises just enough of this property to give reasonably

sensible shallow embeddings. Interestingly a notion of reduction is

forced on us.

This is not a finished work. There is much to explore. (See my other

papers.)

a-logic with arrows 20

