Lambda context calculus

Murdoch J. Gabbay, Heriot-Watt University, Scotland

LFMTP, CADE, Bremen
Sunday, 15 July 2007

Joint work with Stéphane Lengrand, St Andrew’s University,
Scotland

Lambda context calculus

Amongst other things I’'m interested in in the \-calculus and
logic.

By | mean the stuff that ‘surrounds’ terms and which may bind
variables in them:

Aa.t

is context surrounding the \-term ¢.

Ya.o

is a context surrounding the first-order logic predicate ¢.

Put a term in a context, and you get another term.

Lambda context calculus

Contexts are used in (informal specifications of) rewrite and derivation
rules. (3- and n-reduction for example refer to the top-level structure of a
term, as does the derivation rules V R:

I't¢ lagT]
Va.p

(Aa.s)t — sla—t] a#s = Aa.(sa) = s

Lambda context calculus

Contexts on contexts

Rewrites and derivation rules are usually understood to operate on
terms — but they use contexts to do so.

This shows up directly in the theory:

Lambda context calculus

A=B=C [A]" 7 A=B=C [A]" A=B [A]
B=C B B=C B
C C

7 7

A=C A=C
Both derivations above are of A= B=C, A= B F A=-C'but the
left-hand one is incomplete.

Discharge means that we have to be able to instantiate 7 in an
Incomplete derivation for an assumption which will be discharged.
Discharge corresponds in the Curry-Howard correspondence to
A-abstraction. Instantiation corresponds to capturing substitution.

Lambda context calculus

Context on contexts

So contexts have to do with capturing substitution.

Lambda context calculus

Just a little bit more context on contexts

At its most simple | want a direct model of what happens when we write:
‘Let ¢ be a in \a.t. We get \a.a!

Call this instantiation (non-capture-avoiding substitution).

Instantiation is central to informal mathematics — as Randy said, the
mathematics where we mean what we say and we say what we mean —
so this Is an interesting and important question.

A-abstraction and function application aren'tit. Af.(Aa.f)a =5 Aa’.a.

Lambda context calculus

Lambda context calculus

Suppose disjoint infinite sets of variables A1, Ao,
i,j,k € {1,2,3,...} are levels.

a; € A, is a meta-variable ranging over elements of A;; we say a; has
level <. Similarly for b; € A;. If 7 > ¢ call a; weaker than b,.

We use a permutative convention that a;, bj, Ck,...area;, bj, and cg
are always distinct variables.

x, 1, z are particular elements of A .
X, Y, Z are particular elements of As.

Lambda context calculus

Lambda context calculus syntax

s, tu=a; | tt| Aa;.t | tla;—t].
It looks just like lambda-calculus with explicit substitutions.

Let fv(¢) be defined as usual. For example:

fv(sla;—t]) = (fv(s) \ {a;}) U fv(t)

Lambda context calculus

Levels and # (technical)

Let level (%) be the level of the strongest variable in £, free or bound. For
example:

level(Aa;.t) = max(a;, level(t))
level(s|a;+—t]) = max(level(s), a;, level(t))
Finally if S is a set of variables write a;#.5 when
e a; ¢ .5 and
e ; > kforeveryc, € 5.
For example a;#{b; } but not a; #{b, } if j > 1.

Lambda context calculus

10

The following reduction rules took me (and then Stéphane) about three
years to find; perhaps two. | lost count. They’re not terribly hard.

3) (Aa;.s)t — s|a;—t]
aa) a; [CLZHt] — 1

ofv) sla;—t] — s a;#fv(s)

(ss)|a;—t] — (s|a;—t])(s'|a;—t]) level(s, s’,t) <1

)
oo) slaj—t|[bj—u] — slbj—ulla;—tbj—ul] i< g
)

Aa;.s)|bj—u] — Aa;.(s|bj—ul) i< J

Aa;.s)|ci—u] — Aa;.(s|ci—ul) a;#fv(u)

Lambda context calculus 11

Example reductions

Recall that X, Y, Z have level 2 and x, y, 2 have level 1.
t ranges over any term.

(ofv)

o | X—t] — u, since X #{x}.

(ofv)

o ylr—t| —), since z#{y}.

(0a)

o r|r—t] — t.

X [x—t] will not reduce with (ofv) (or any other rule) since z#{ X }
does not hold.

Lambda context calculus

12

Strong variables distributing under weak ones

(00)

X|z—t|[X—z] — X[X—z||lz—t[X —z]]

(0a)

— x|rx—t| X—z]]

BN t| X—x]

(Az. X) [X—z] — . (X[X—zx]) — Az

So we have our model of instantiation.

Lambda context calculus

13

Why (ofv)? We need (ofv) for confluence: substitutions don't always
distribute over applications because of the side-condition on (op).

Why the side-condition on (op)? Any weakening of it we've
considered so far, breaks confluence.

(-equivalence is interesting. The correct notion of «v-equivalence is
__ / ' o Neo if A
such that Aa;.s =, Aa,.(a; a;)s if a,#s.

Eg Ae.X = y.(yx) X if a#X.

This makes things complicated so in the LamCC we approximate it; we
can derive A\x. \y.zy = Az’ \y".2"y but not Ax. X = \y. X.

The LamCC tries to be simple.

Lambda context calculus

14

Why infinitely many levels?
Are weak and strong variables always enough; x and X ?

One-and-a-halfth-order logic (Gabbay and Mathijssen 2007) does that;
It's a variant of first-order logic with predicate unknowns.

But the infinite hierarchy gives useful power.

For example | X +—t] is not a term but \W. V| X —t| where W € Asg,
IS a term and:

OWW[Xt])s —2 WX t][Wios]

DWW s|[Xt Wi s]] — WWiss][X 1] — s[X 1),

Lambda context calculus 15

New calculus of contexts — same idea and superficially similar syntax,
but the LamCC does pretty much the same thing and it’s a lot simpler.

Lambda context calculus

16

Incomplete \-terms, incomplete proofs, that kind of thing.

The LamCC represents instantiation. It requires no special apparatus —
e.g. labelling strong variables with weak variables they are allowed to

depend on, or raising and lifting operators a la de Bruijn. In my opinion
that’s a plus.

How well does this help us model/program on/reason about contexts?

Lambda context calculus 17

Denotations. | count this as an application.

What new denotations are needed to model instantiation?

Lambda context calculus

18

Pattern calculi, logic variables, OO languages, Glasgow Parallel Haskell;
can they be usefully compiled into LamCC?

Does instantiation give useful flexibility? We can build A-terms top-down
then dynamically link arguments to the A-abstractions bottom-up, at
run-time.

Lambda context calculus

19

Comparison of variables for intensional equality.

At the meta-level (say, level 2) we can compare x and y for intensional
equality. | think that we can add an intensional equality to the LamCC.

It's just a constant == that doesn’t commute with aq |—>t].
==, y — Flalse.

Higher-order logic in the LamCC.

Differs from ‘ordinary’ higher-order logic because we can express
Instantiation, so we can directly reason ... on contexts. I'd like to be able
to write, for example

VP.(a#P = ((Va.P) & P))

Lambda context calculus 20

