
Lambda context calculus

Murdoch J. Gabbay, Heriot-Watt University, Scotland

LFMTP, CADE, Bremen
Sunday, 15 July 2007

Joint work with Stéphane Lengrand, St Andrew’s University,
Scotland

Lambda context calculus 1

Context of contexts

Amongst other things I’m interested in contexts in the λ-calculus and

logic.

By context I mean the stuff that ‘surrounds’ terms and which may bind

variables in them:

λa.t

is context surrounding the λ-term t.

∀a.φ

is a context surrounding the first-order logic predicate φ.

Put a term in a context, and you get another term.

Lambda context calculus 2

Contexts on contexts

Contexts are used in (informal specifications of) rewrite and derivation

rules. β- and η-reduction for example refer to the top-level structure of a

term, as does the derivation rules ∀R:

(λa.s)t −→ s[a7→t] a#s ⇒ λa.(sa) = s
Γ ⊢ φ [a 6∈ Γ]

∀a.φ

Lambda context calculus 3

Contexts on contexts

Rewrites and derivation rules are usually understood to operate on

terms — but they use contexts to do so.

This shows up directly in the theory:

Lambda context calculus 4

Context of contexts

A⇒B⇒C [A]i

B⇒C

?

B

C
i

A⇒C

A⇒B⇒C [A]i

B⇒C

A⇒B [A]i

B

C
i

A⇒C

Both derivations above are of A⇒B⇒C,A⇒B ⊢ A⇒C but the

left-hand one is incomplete.

Discharge means that we have to be able to instantiate ? in an

incomplete derivation for an assumption which will be discharged.

Discharge corresponds in the Curry-Howard correspondence to

λ-abstraction. Instantiation corresponds to capturing substitution.

Lambda context calculus 5

Context on contexts

So contexts have to do with capturing substitution.

Lambda context calculus 6

Just a little bit more context on contexts

At its most simple I want a direct model of what happens when we write:

‘Let t be a in λa.t. We get λa.a.’

Call this instantiation (non-capture-avoiding substitution).

Instantiation is central to informal mathematics — as Randy said, the

mathematics where we mean what we say and we say what we mean —

so this is an interesting and important question.

λ-abstraction and function application aren’t it. λf.(λa.f)a =β λa′.a.

Lambda context calculus 7

Lambda context calculus

Suppose disjoint infinite sets of variables A1, A2,

i, j, k ∈ {1, 2, 3, . . .} are levels.

ai ∈ Ai is a meta-variable ranging over elements of Ai; we say ai has

level i. Similarly for bj ∈ Aj . If j > i call ai weaker than bj .

We use a permutative convention that ai, bj , ck, . . . are ai, bj , and ck

are always distinct variables.

x, y, z are particular elements of A1.

X,Y,Z are particular elements of A2.

Lambda context calculus 8

Lambda context calculus syntax

s, t ::= ai | tt | λai.t | t[ai 7→t].

It looks just like lambda-calculus with explicit substitutions.

Let fv(t) be defined as usual. For example:

fv(s[ai 7→t]) = (fv(s) \ {ai}) ∪ fv(t)

Lambda context calculus 9

Levels and # (technical)

Let level(t) be the level of the strongest variable in t, free or bound. For

example:

level(λai.t) = max(ai, level(t))

level(s[ai 7→t]) = max(level(s), ai, level(t))

Finally if S is a set of variables write ai#S when

• ai 6∈ S and

• i ≥ k for every ck ∈ S.

For example ai#{bi} but not ai#{bj} if j > i.

Lambda context calculus 10

The following reduction rules took me (and then Stéphane) about three

years to find; perhaps two. I lost count. They’re not terribly hard.

(β) (λai.s)t −→ s[ai 7→t]

(σa) ai[ai 7→t] −→ t

(σfv) s[ai 7→t] −→ s ai#fv(s)

(σp) (ss′)[ai 7→t] −→ (s[ai 7→t])(s′[ai 7→t]) level(s, s′, t) ≤ i

(σσ) s[ai 7→t][bj 7→u] −→ s[bj 7→u][ai 7→t[bj 7→u]] i < j

(σλ) (λai.s)[bj 7→u] −→ λai.(s[bj 7→u]) i < j

(σλ′) (λai.s)[ci 7→u] −→ λai.(s[ci 7→u]) ai#fv(u)

Lambda context calculus 11

Example reductions

Recall that X,Y,Z have level 2 and x, y, z have level 1.

t ranges over any term.

• x[X 7→t]
(σfv)

−→ x, since X#{x}.

• y[x7→t]
(σfv)

−→ y, since x#{y}.

• x[x7→t]
(σa)

−→ t.

X[x7→t] will not reduce with (σfv) (or any other rule) since x#{X}
does not hold.

Lambda context calculus 12

Strong variables distributing under weak ones

X[x7→t][X 7→x]
(σσ)

−→ X[X 7→x][x7→t[X 7→x]]

(σa)

−→ x[x7→t[X 7→x]]

(σa)

−→ t[X 7→x]

(λx.X)[X 7→x] −→ λx.(X[X 7→x]) −→ λx.x

So we have our model of instantiation.

Lambda context calculus 13

Why are the rules the way they are?

Why (σfv)? We need (σfv) for confluence: substitutions don’t always

distribute over applications because of the side-condition on (σp).

Why the side-condition on (σp)? Any weakening of it we’ve

considered so far, breaks confluence.

α-equivalence is interesting. The correct notion of α-equivalence is

such that λai.s =α λa′

i.(a
′

i ai)s if a′

i#s.

E.g. λx.X = λy.(y x)X if x#X .

This makes things complicated so in the LamCC we approximate it; we

can derive λx.λy.xy = λx′.λy′.x′y′ but not λx.X = λy.X .

The LamCC tries to be simple.

Lambda context calculus 14

Why infinitely many levels?

Are weak and strong variables always enough; x and X?

One-and-a-halfth-order logic (Gabbay and Mathijssen 2007) does that;

it’s a variant of first-order logic with predicate unknowns.

But the infinite hierarchy gives useful power.

For example [X 7→t] is not a term but λW.W[X 7→t] where W ∈ A3,

is a term and:

(λW .W[X 7→t])s
(β)

−→ W[X 7→t][W7→s]

(σσ)

−→ W[W7→s][X 7→t[W7→s]]
(σfv)

−→ W[W7→s][X 7→t]
(σa)

−→ s[X 7→t].

Lambda context calculus 15

What’s the relation to . . .

New calculus of contexts — same idea and superficially similar syntax,

but the LamCC does pretty much the same thing and it’s a lot simpler.

Lambda context calculus 16

Applications

Incomplete λ-terms, incomplete proofs, that kind of thing.

The LamCC represents instantiation. It requires no special apparatus —

e.g. labelling strong variables with weak variables they are allowed to

depend on, or raising and lifting operators a la de Bruijn. In my opinion

that’s a plus.

How well does this help us model/program on/reason about contexts?

Lambda context calculus 17

Applications

Denotations. I count this as an application.

What new denotations are needed to model instantiation?

Lambda context calculus 18

Applications

Pattern calculi, logic variables, OO languages, Glasgow Parallel Haskell;

can they be usefully compiled into LamCC?

Does instantiation give useful flexibility? We can build λ-terms top-down

then dynamically link arguments to the λ-abstractions bottom-up, at

run-time.

Lambda context calculus 19

Extensions of LamCC

Comparison of variables for intensional equality.

At the meta-level (say, level 2) we can compare x and y for intensional
equality. I think that we can add an intensional equality to the LamCC.

It’s just a constant ==1 that doesn’t commute with a1 7→t].
x ==1 y −→ False.

Higher-order logic in the LamCC.

Differs from ‘ordinary’ higher-order logic because we can express
instantiation, so we can directly reason . . . on contexts. I’d like to be able
to write, for example

∀P.(a#P ⇒ ((∀a.P) ⇔ P))

Lambda context calculus 20

