
Nominal techniques: present, and future
prospects

Murdoch J. Gabbay, Heriot-Watt University, Scotland

TU/E, Eindhoven, Netherlands
Monday, 14 November 2007

Thanks to Adam Koprovski

Nominal techniques: present, and future prospects 1



Nominal techniques

Thanks to Aad Mathijssen for a productive collaboration developing

Nominal Algebra. I wish him well for the future.

Thanks to Jan-Friso Groote; this time two years ago I was living here in

Eindhoven. I remember that time fondly.

Thanks also to MohammadReza Mousavi. We never did manage to

finish writing that paper but I hope we’ll keep trying.

Nominal techniques: present, and future prospects 2



Nominal techniques

What are nominal techniques? Good question. When I finished my PhD

(in 2001), ‘nominal techniques’ meant a semantics for ‘syntax trees up

to α-equivalence’.

Syntax trees do have a semantics — trees. It’s not terribly complicated.

The semantics of syntax trees up to α-equivalence is important because

so many proofs need induction on syntax (of terms, of derivations).

They require renaming of bound variables. I studied how to do that.

This led to the discovery of equivariance and the Gabbay-Pitts

N-quantifier and model of α-abstraction.

Nominal techniques: present, and future prospects 3



Nominal techniques

I propose that nominal techniques are/can be used for two things:

• A theory of name-like entities in syntax and semantics.

• A theory of truth at the informal meta-level.

It turns out that there is substantial (and unanticipated) overlap between

these two things.

At this point I can expect some listeners to be confused. So let’s get

some overview of some logics.

Nominal techniques: present, and future prospects 4



What’s good for what?

Propositional logic, a theory of truth and implication:

it is a belgian beer ⇒ it is good

Modal logic, a theory of truth and implication over time, space, or

possibility:

�(it is a belgian beer ⇒ it is good)

First-order logic, a theory of truth and implication over elements (of

some domain of discourse):

∀x.(beer(x) ∧ belgian(x) ⇒ good(x))

Nominal techniques: present, and future prospects 5



What’s good for what?

Second-order logic, a theory of truth over sets of elements:

∀U.
(

(∀x ∈ U.beer(x) ∧ belgian(x)) ⇒ excellent(U)
)

Higher-order logic, a theory of truth over functions.

Nominal techniques: a formal theory of truth in the informal meta-theory

of the logics above — of many ‘formal methods’ in computer science.

It turns out that names play a large part in this informal meta-theory.

The model of names provided by my thesis can be applied here, to give

a formal theory of truth in the informal meta-level of the logics above.

Nominal techniques: present, and future prospects 6



Nominal algebra

Nominal algebra is one part of this formal theory. I can show you a few

axioms.

Nominal techniques: present, and future prospects 7



Nominal algebra axioms for substitution

(var 7→) a[a7→T ] = T

(#7→) a#X ⊢ X[a7→T ] = X

(⇒7→) (P ⇒ Q)[a7→T ] = (P [a7→t]) ⇒ (Q[a7→t])

(= 7→) (U = V )[a7→T ] = (U [a7→t]) = (V [a7→t])

(∀7→) b#T ⊢ (∀[b]P )[a7→T ] = ∀[b](P [a7→T ])

(sub7→) b#T ⊢ X[b 7→U ][a7→T ] = X[a7→T ][b 7→U [a7→T ]]

(ren7→) b#X ⊢ X[a7→b] = (b a) · X

s[a7→t] is shorthand for sub([a]s, t).

Nominal techniques: present, and future prospects 8



Nominal algebra axioms of first-order logic

Usual rules for boolean algebra, plus axioms for substitution, plus

(Q1) ∀[a]P ⇒ P [a7→T ] = ⊤

(Q2) ∀[a](P ∧ Q) ⇔ ∀[a]P ∧ ∀[a]Q = ⊤

(Q3) a#P ⊢ ∀[a](P ⇒ Q) ⇔ (P ⇒ ∀[a]Q) = ⊤

(E1) U = T ∧ P [a7→T ] ⇒ P [a7→U ] = ⊤

(E2) T = T = ⊤

Nominal techniques: present, and future prospects 9



Nominal algebra axioms for the λ-calculus

(var 7→) ⊢ a[a7→X] = X

(#7→) a#Z ⊢ Z[a7→X] = Z

(app7→) ⊢ (Z ′Z)[a7→X] = (Z ′[a7→X])(Z[a7→X])

(abs 7→) b#X ⊢ (λb.Z)[a7→X] = λb.(Z[a7→X])

(ren7→) b#Z ⊢ Z[a7→b] = (b a) · Z

Nominal techniques: present, and future prospects 10



Abstraction

Abstraction is a feature of nominal terms. [a]X is ‘abstract a in X ’. X
is a level 2 name, a is a level 1 name. Substitution for X does not avoid

capture by abstraction by a level 1 name. So ([a]X)[a/X] ≡ [a]a.

This gives X the behaviour of a meta-variable, and a the behaviour of

an object-level variable.

[a]X is formal syntax, and it behaves like the following expressions at

the informal meta-level: λx.t or ∀x.φ or νx.P .

Nominal techniques: present, and future prospects 11



α-equivalence

The freshness side-condition a#X lets us write formal ‘not free in’

side-conditions which behave like the following expressions at the

informal meta-level: ‘a is not free in t’, ‘a is not free in φ’, ‘a is not free in

P ’.

A theory of α-equivalence is built in to nominal algebra, via

permutations like (b a) (swap b and a). So

b#X ⊢ [b](b a) · X = [a]X

exactly captures α-equivalence. It turns out that this is a special case of

a#X, b#X ⊢ (b a) · X = X.

Nominal techniques: present, and future prospects 12



α-equivalence

Substitute [a]X for X

a#[a]X, b#[a]X ⊢ (b a) · [a]X = [a]X

and use the facts that

• (b a) · [a]X ≡ [b](b a) · X ,

• a#[a]X always, and

• b#[a]X implies b#[a]X .

Permutations are ‘naturally capture-avoiding’; they distribute through

binders as pairs, renaming also abstracted level 1 names. This use of

permutations is one of the original surprises of nominal techniques.

Nominal techniques: present, and future prospects 13



Nominal techniques

To what extent does nominal algebra illustrate my claims about

name-like entities?

Much of the power of nominal algebra comes from the use of two levels

of name, a and X .

Freshness side-conditions allow us to assert formal relationships

between these names; a#X or ‘a is fresh for X ’.

Substitution actions make the names behave like variables, but as we

have seen substitution can be axiomatised; no further apparatus is

needed to include it.

Nominal techniques: present, and future prospects 14



Nominal techniques

Permutations (bijections on names) are built-in. These are used to

capture α-equivalence of level 1 abstraction in the presence of level 2
variables;

[a]X =α [b]X is wrong because if we substitute a for X we get

[a]a =α [b]a.

Recall previous axiom. [b](b a) · a ≡ [b]b and [b]b =α [a]a is not

wrong.

Nominal techniques: present, and future prospects 15



Nominal algebra

Nominal algebra scores because it is ǫ away from informal practice.

The informal meta-level has two levels of variable, it also has freshness

side-conditions.

The nominal algebra theory of α-equivalence does not appear in the

informal meta-level — it is the missing ingredient necessary to make it

into a formal theory.

Nominal techniques: present, and future prospects 16



Nominal algebra

α-equivalence and unification of nominal terms is decidable.

Equality of the nominal theory of substitution is also decidable;

decidability of unification is an open problem.

The ability of nominal algebra to specify theories, such as logics and

λ-calculi (and also process calculi), is well-established.

The usefulness of nominal techniques in reasoning about syntax with

binding (the original application in my thesis) is now as well-accepted as

anything can be in this field.

I believe that what we have seen so far is only a fraction of what can be

achieved.

Nominal techniques: present, and future prospects 17



Future work: a theory of contexts

Derivation trees are syntax. Quantifier rules abstract the fresh name

they generate in the subtree of which they are a head (usually, we think

of the fresh name as ‘being free’ in the subtree).

An ‘incomplete derivation’ should be representable using the same

nominal terms technology we used, for example, to treat the λ-calculus.

λa.X is ‘morally’ the same as (∀aR)X , an unknown derivation

concluding in a ∀-intro rule:

·
·
·
X

(∀R)
⊢ ∀a.(a = a)

Nominal techniques: present, and future prospects 18



Future work: cylindric techniques

Nominal algebra is in some sense a variant of the so-called ‘cylindric

algebras’, commonly applied to first-order logic and also to the

λ-calculus.

I would prefer to see more communication with this community. I would

like to see their powerful theorems translated to the nominal setting.

I suspect that they will become more powerful in the translation because

the nominal terms syntax is more expressive than that of the usual

cylindric syntaxes (permutations, freshness side-conditions), and

because nominal style semantics assume finite support.

Nominal techniques: present, and future prospects 19



Future work: a theory of incomplete derivations

I know that Geuvers has been interested in this, and I am aware of other

groups working on incomplete proof to model top-down proof-search.

I wish that somebody would get on with it and carry out this immediate

and relatively easy application of nominal technology — preferably with

me.

Nominal techniques: present, and future prospects 20



Future work: a nominal algebra theorem prover

Building a new theorem-prover is a very large undertaking but it might

be worth doing.

It could make a good topic for an able and hard-working PhD student.

Nominal algebra demonstrates how close we can get to the informal

meta-level using a logic based on nominal terms. It now seems to me

inevitable that somebody, somewhere, will have a go at this.

Nominal techniques: present, and future prospects 21



Future work: two-and-a-halfth-order logic

Quantify over the level 2 variables in nominal algebra, internalise the

freshness side-conditions using implication.

Pick an axiom at random:

b#T ⊢ (∀[b]P )[a7→T ] = ∀[b](P [a7→T ])

becomes

∀T. b#T ⇒ ∀P.
(

(∀b.P )[a7→T ] ⇔ ∀b.(P [a7→T ])
)

.

Nominal techniques: present, and future prospects 22



Future work: denotational models

Nominal techniques are now in use in Oxford (nominal games), in

Microsoft Research in Cambridge (nominal pointers), in Cambridge

Computer Laboratory (original application to inductive reasoning on

syntax; pencil and paper proofs), in Munich (original application to

inductive reasoning on syntax; nominal Isabelle), and also in Pisa and

Udine (nominal models of HD automata). And of course there’s Aad

here at TU/e, and perhaps also Mohammad and Michel.

There’s more; like everybody else I commit the sin of forgetting to

mention half the people in the field.

I am pleased that the ideas started back in 1999 are finding such

application.

Nominal techniques: present, and future prospects 23



Conclusions

Nominal techniques are a theory of names.

The examples of nominal games, nominal semantics for pointers, and

nominal models of HD automata, demonstrate that name-like entities

are not confined to syntax-with-binders, theorem-provers, and variable

symbols.

The example of nominal algebra shows that we can make formal logics

out of these ideas.

Nominal techniques: present, and future prospects 24



Conclusions

I have written many Introductions/Conclusions to papers (accepted!)

and project proposals (not yet!) to the effect that:

Name-like entities are pervasive in computer science. There is a strong

case to treat their theory as an independent field of theoretical computer

science.

The theory of numbers is independent of arithmetic algorithms (but

related to it). The theory of the λ-calculus is independent of the theory

of programming languages (but related to it).

In a similar way, the theory of names is independent of variables,

pointers, channel names, and so on (but related to them all).

Nominal techniques: present, and future prospects 25



Conclusions

I have emphasised nominal algebra in this talk, in honour of the work

Aad did here at TU/e.

In the field of logic, nominal techniques score highly because — as for

example nominal algebra demonstrates — we can get ‘ǫ away from

informal practice’.

Nominal techniques: present, and future prospects 26



Conclusions

There is a strong dose of what I like to call ‘ergonomic’ motivation in

computer science.

Andrew Pitts calls it ‘ǫ away from informal practice’.

De Bruijn wrote

“I think that in formalizing mathematics, and in particular in

preparing mathematics for justification, it is usually elegant as

well as efficient to do everything in the natural way.”

(Checking mathematics with computer assistance, AMS, 1991)

Nominal techniques: present, and future prospects 27



Conclusions

A pure mathematician once said to me ‘I don’t know why you [computer

scientists] bother with the λ-calculus; just use combinators’. But

combinators are not ergonomic; people prefer C to SKI.

Likewise, some people say ‘don’t bother designing better formal

methods; just hire better programmers’. But this is wrong.

History shows that careful and mathematically rigorous attention to

informal computational practice leads to new mathematics, which can

lead (after a delay, which is nevertheless shrinking) to better tools.

Modern databases are one example. Boolean algebra is another.

Nominal techniques: present, and future prospects 28



Conclusions

It is therefore inevitable that somebody, somewhere, will get research

added value from the new and underexploited ergonomics which

nominal techniques offer in logic, automated proof, and elsewhere.

There is also research capital to be made in denotations, e.g. the

nominal game theory or nominal pointers work.

I do not know who will do what, nor what the finished product will look

like. But the research capital is there, waiting, for us — for anybody — to

pick it up.

Nominal techniques: present, and future prospects 29



In case somebody asks about incomplete derivations

A⇒B⇒C [A]i

B⇒C

?

B

C
i

A⇒C

A⇒B⇒C [A]i

B⇒C

A⇒B [A]i

B

C
i

A⇒C

Capturing substitution necessary for Curry-Howard with incomplete

derivations.

(Example borrowed from [Jojgov, TYPES 2002]).

Nominal techniques: present, and future prospects 30


