Two-and-a-halfth-order lambda-calculus:
a calculus of the informal meta-level.

Murdoch J. Gabbay, Heriot-Watt University, Scotland

DSG group meeting
Thursday 7 February 2008

Joint work with Dominic Mulligan

Two-and-a-halfth-order \-calculus: a calculus of the information meta-level.

A simple and efficient syntax for talking about functions. Functions are
useful: they turn up in higher-order logic, higher-order unification and
rewriting, programming languages, theorem-provers, and lots more.

The A-calculus is the standard syntax for functions.

Two-and-a-halfth-order \-calculus: a calculus of the information meta-level.

The informal meta-level

The informal meta-level (by this | intend ‘the discourse of a typical
theory paper’) is full of capture-avoidance conditions and capturing
substitution:

e)\-calculus: (Az.r)|y—t] = Ax.(r|y—t]) x freshfort
e m-calculus: ve.(P|Q)=P|ve.Q x fresh for P
e First-order logic: Vz.(¢p =) =¢ = Vr.p xfreshfor ¢

Two-and-a-halfth-order \-calculus: a calculus of the information meta-level.

The informal meta-level

Capture-avoidance conditions are on the right-hand side; they relate
object-variables x, y to meta-variables r, t, P,), ¢, 1.

Capturing substitution (‘instantiation’) is when meta-variables are turned
Into terms, as in:

“Setr to x and t to x in (A\x.r)|y+—t]; obtain (A\x.x)|yr—x]”

Conventional wisdom has it that these are just operations on syntax.

Two-and-a-halfth-order \-calculus: a calculus of the information meta-level.

We argue that what happens at the informal meta-level reflects
mathematical entities which — like functions — may be studied using a

\-calculus.

That means a A-calculus with \-abstraction over object-level variables
(as usual) meta-level variables (as unusual) and freshness

conditions.
We also need a-equivalence.

This all turns out to be very interesting indeed.

Two-and-a-halfth-order \-calculus: a calculus of the information meta-level.

Syntax of two-and-a-halfth-order A-calculus

Fixsetsa,b,c,...and X, Y, Z,... of level 1 and level 2 variables.

A permutation 7t is a finitely supported bijection of leve | 1 variables.
‘Finitely supported’ means 7(a) = a for all but finitely many level 1
variables.

Define syntax by:
r,s, tyu,v = a | m-X | dar | AXor | rr

The part to do with a, Aa.r, and 77 is the ‘usual’ A-calculus.

Two-and-a-halfth-order \-calculus: a calculus of the information meta-level.

Level 2 interacting with level 1

“Set t to be x in Ax.t” is modelled by the reduction
(AX.(Aa.X))a — (Aa. X)X :=a] = Aa.a.

Here = is syntactic identity up to level 2 cc-equivalence and [X = a] IS
a level 2 substitution.

|.X := a] does not avoid capture by Aa, modelling the behaviour of
Instantiation.

Within a single level everything is as usual:
(Ab.(Aa.b))a —(Aa.b)[b—a] — Aa’.(b[b—a]) — Ad'.a
AY.QAXY)H)X - AX Y)Y = X] = \X".(Y[Y = X]) =\ X' .X.

Two-and-a-halfth-order \-calculus: a calculus of the information meta-level.

Level 1 cv-equivalence

Write =, for cv-equivalence.
We do not want Aa..X =, Ab..X.

If this were so, then also

AXAa. X =4 AXA.X and (AX.Xa.X)a =, (AX.A.X)a
and therefore (reducing a bit)

Aa.a =, Ab.a.

Two-and-a-halfth-order \-calculus: a calculus of the information meta-level.

Level 1 cv-equivalence

So we use freshness a# X (‘a does not occur in whatever X is
Instantiated to) and permutations 7, borrowed from nominal terms.

If b# X then Aa.X =, Ab.(ba) - X.

Here (ba)-b=a,(ba)-a =b,and (ba) - c = c. Itis a swapping.

AX. A a. X =, AX.)\b.X is never true; we cannot control the input to
X so we cannot guarantee b# X .

However, instantiating X to a in b#X F Aa.X — aterm-in-context —
note that b#a and

Aa.a =4 \b.(ba) - a = A\b.b.

Two-and-a-halfth-order \-calculus: a calculus of the information meta-level.

