
Two-and-a-halfth-order lambda-calculus:
a calculus of the informal meta-level.

Murdoch J. Gabbay, Heriot-Watt University, Scotland

DSG group meeting
Thursday 7 February 2008

Joint work with Dominic Mulligan

Two-and-a-halfth-order λ-calculus: a calculus of the information meta-level. 1

The λ-calculus

A simple and efficient syntax for talking about functions. Functions are

useful: they turn up in higher-order logic, higher-order unification and

rewriting, programming languages, theorem-provers, and lots more.

The λ-calculus is the de facto standard syntax for functions.

Two-and-a-halfth-order λ-calculus: a calculus of the information meta-level. 2

The informal meta-level

The informal meta-level (by this I intend ‘the discourse of a typical

theory paper’) is full of capture-avoidance conditions and capturing

substitution:

• λ-calculus: (λx.r)[y 7→t] = λx.(r[y 7→t]) x fresh for t

• π-calculus: νx.(P | Q) = P | νx.Q x fresh for P

• First-order logic: ∀x.(φ⇒ ψ) = φ⇒ ∀x.ψ x fresh for φ

Two-and-a-halfth-order λ-calculus: a calculus of the information meta-level. 3

The informal meta-level

Capture-avoidance conditions are on the right-hand side; they relate

object-variables x, y to meta-variables r, t, P,Q, φ, ψ.

Capturing substitution (‘instantiation’) is when meta-variables are turned

into terms, as in:

“Set r to x and t to x in (λx.r)[y 7→t]; obtain (λx.x)[y 7→x].”

Conventional wisdom has it that these are just operations on syntax.

Two-and-a-halfth-order λ-calculus: a calculus of the information meta-level. 4

The informal meta-level, formalised

We argue that what happens at the informal meta-level reflects

mathematical entities which — like functions — may be studied using a

λ-calculus.

That means a λ-calculus with λ-abstraction over object-level variables

(as usual) and meta-level variables (as unusual) and freshness

conditions.

We also need α-equivalence.

This all turns out to be very interesting indeed.

Two-and-a-halfth-order λ-calculus: a calculus of the information meta-level. 5

Syntax of two-and-a-halfth-order λ-calculus

Fix sets a, b, c, . . . and X,Y,Z, . . . of level 1 and level 2 variables.

A permutation π is a finitely supported bijection of leve l 1 variables.

‘Finitely supported’ means π(a) = a for all but finitely many level 1

variables.

Define syntax by:

r, s, t, u, v ::= a | π ·X | λa.r | λX.r | rr

The part to do with a, λa.r, and rr is the ‘usual’ λ-calculus.

Two-and-a-halfth-order λ-calculus: a calculus of the information meta-level. 6

Level 2 interacting with level 1

“Set t to be x in λx.t” is modelled by the reduction

(λX.(λa.X))a → (λa.X)[X := a] ≡ λa.a.

Here ≡ is syntactic identity up to level 2 α-equivalence and [X := a] is
a level 2 substitution.

[X := a] does not avoid capture by λa, modelling the behaviour of
instantiation.

Within a single level everything is as usual:

(λb.(λa.b))a →(λa.b)[b 7→a] → λa′.(b[b 7→a]) → λa′.a

(λY.(λX.Y))X →(λX.Y)[Y := X] ≡ λX ′.(Y [Y := X]) ≡ λX ′.X.

Two-and-a-halfth-order λ-calculus: a calculus of the information meta-level. 7

Level 1 α-equivalence

Write =α for α-equivalence.

We do not want λa.X =α λb.X .

If this were so, then also

λX.λa.X =α λX.λb.X and (λX.λa.X)a =α (λX.λb.X)a

and therefore (reducing a bit)

λa.a =α λb.a.

Two-and-a-halfth-order λ-calculus: a calculus of the information meta-level. 8

Level 1 α-equivalence

So we use freshness a#X (‘a does not occur in whatever X is

instantiated to) and permutations π, borrowed from nominal terms.

If b#X then λa.X =α λb.(b a) ·X.

Here (b a) · b = a, (b a) · a = b, and (b a) · c = c. It is a swapping.

λX.λa.X =α λX.λb.X is never true; we cannot control the input to

X so we cannot guarantee b#X .

However, instantiating X to a in b#X ⊢ λa.X — a term-in-context —

note that b#a and

λa.a =α λb.(b a) · a ≡ λb.b.

Two-and-a-halfth-order λ-calculus: a calculus of the information meta-level. 9

