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Computer science

Computer science covers a broad range of interesting mathematical

challenges: cryptographic protocols, programming languages,

verification of systems.

We work in the foundations of computer science. We make logics, set

theories, and similar.

Arbitrary objects in mathematics and semantics. 2



Computer science

Computer science continues to throw up new problems. We believe that

some of these problems are difficult because of the mathematical

foundations which we use.

We also believe that some of the foundational implications link in directly

to issues of generality and arbitrariness that philosophers of

mathematics have been worrying about for centuries.
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Computer science

What is the difference between the following two terms/programs?

1. λx.fx

2. λy.fy

In a sense, nothing, both correspond to the function f . But in another

sense, there is a difference. To a computer, which just crunches

symbols, they correspond to different operations.
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Computer science and Philosophy

What is the difference between the following two (partial) assertions?

1. Let x be a number, we may apply f to it to yield. . .

2. Let y be a number, we may apply f to it to yield. . .

A natural answer: semantically nothing, but there are syntactic

differences.

But the difference between x and y is not like that of ‘groundhog’ and

‘woodchuck’, for we not entitled to assert x = y.
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Arbitrary Objects

A natural attempt to solve this issue is to theorise that x and y refer to

distinct arbitrary objects. In the case above, arbitrary numbers.

This suggests a simple semantic account of ‘general’ assertions.

General assertions are like particular assertions, except that the

particulars happen to be ‘general’ objects! Similarly with knowledge and

understanding.
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Problems with arbitrary objects

Arbitrary objects have peculiar properties. For example an arbitrary pig

. . . has just those properties that every pig has. Since not every

pig is pink, grey, or any other color, the universally generic pig is

not of any color. (Yet neither is he colorless, since not

every-indeed not any-pig is colorless.) Nor is he(?) male or

female (or neuter), since not every pig is any one of these. He

is, however, a pig and an animal, and he grunts; for every pig is

a pig and an animal, and grunts. [Lewis, General Semantics]
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Fine on arbitrary objects

Kit Fine, in Reasoning with arbitrary objects, constructs an algebra of

arbitrary objects which makes logical sense of Lewis’s complaint.

But how do arbitrary objects relate to semantics?

1. Let x be a number, then Fx.

2. v(Fx) = ⊤ for every x-alternate valuation to v.

We can set up an algebra of arbitrary objects to makes these equivalent.

But it would be better to give a foundational account of arbitrary objects

out of which the equivalence, and the algebra, just ‘falls out’.

For example, the algebra of propositions just ‘falls out’ of the familiar set

theoretic interpretation of propositional logic.
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Not all arbitrary terms are universal

Consider a famous example:

• If a farmer has a donkey then he beats it.

The expression ‘a farmer’ has universal import. But what about:

• Suppose someone is next door, then they are either dead or very

quiet.

• If I have a pound, then I’ll put it in the parking meter.
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Existential arbitrary terms?

A mathematical example:

• Let x be a set, and f be a choice function on sets, if x has a

member y then we may assume that fx = y. . . it follows that

A(y).

Does it even make sense to have an arbitrary-particular y?
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A better solution?

We can use the techniques for expressing generality supplied to us by

Frege and developed in modern logic. A sentence such as

• A positive integer is either odd or even.

should be read as either

• [For every x] if x is a positive integer, then x is either odd or even.

Where the expression ‘For every x’ is either implicit in the assertion, or

to be added later.

This solution does not provide a direct semantics to arbitrary terms.
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Semantics for the universal quantifier

The semantics for the universal quantifier are not as straightforward as

one might think. We are all familiar with:

∀x.Fx is true iff v(Fx) = ⊤ for every x-alternate valuation to

v.

But this does not identify the universal quantifier with an operation on

the content of Fx. Put another way:

If the proposition A corresponds to a set |A|, what operation f

does the universal quantifier correspond to so that

f |A| = |∀x.A|?

Tarski semantics does not provide an answer.

Arbitrary objects in mathematics and semantics. 12



Infinite conjunction?

We might treat the universal quantifier as a kind of infinite intersection:

|∀x.A| =
⋂

d∈D
|A[x 7→ d]|.

But [x 7→ d], is not a semantic operation, it is not purely an operation

on contents. It is at least partly syntactic as it makes explicit reference to

variables.
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Arbitrary objects and substituion

If we can treat valuations, and more generally if we treat substitution

semantically then we can combine the best aspects of the two

treatments of apparent reference to arbitrary objects.

Arbitrary terms would refer directly to arbitrary objects which would also

provide a semantic model for the quantifiers as operations on

substitutions or valuations.
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ZF set theory

To the extent that computer scientists think about foundations, they

usually think about Zermelo-Fraenkel (ZF) set theory.

I won’t show you the axioms of Zermelo-Fraenkel set theory. They don’t

matter (like the innards of a car engine don’t matter for getting around).

The user’s idea of ZF is:

• The empty set is an element.

• If X is an element then the set of subsets of X is an element.

Nice, easy idea.
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A problem with this idea

Everything here is concrete. There is no ‘abstract set’.

Consider an example: let X be an element. Then X has to be a

particular set.

It is impossible to use the fact that we never cared what X was.
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Fraenkel-Mostowski set theory

Fraenkel-Mostowski set theory (FM). Developed in the 1930s to prove

the independence of the Axiom of Choice from the other axioms of set

theory. The user’s idea is:

• The empty set is an element.

• Atoms (urelemente) a, b, c, d, . . . are elements. Write A for the set

of all atoms.

• If X is an element then the set of finitely-supported subsets of X is

an element.

I will discuss ‘finitely-supported’ shortly.
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Atoms

Atoms are just atoms. They are particular elements, but they model

arbitrary elements.

We can make this mathematically precise:

If π is a bijection on atoms then we can permute them in any X :

π · X = {π · x | x ∈ X}

For example π · {{a}, b} = {{π(a)}, π(b)}.
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Equivariance

Note that:

• x ∈ y if and only if π · x ∈ π · y (since π · y = {π · x | x ∈ y}).

• x = y if and only if π · x = π · y (since π is a bijection on atoms).

It follows that for any predicate φ(x1, . . . , xn) in the language of sets,

φ(x1, . . . , xn) if and only if φ(π · x1, . . . , π · xn).

This is equivariance: something that is true/false of (x1, . . . , xn) (and

the atoms they contain) is just as true/false if we permute atoms.
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Equivariance

Equivariance states: in the world of FM, atoms are arbitrary up to

permuting them.

Atoms exist — they are elements. We have a, and b, and they are

distinct elements.

But, addressing our earlier point, even if we choose one particular atom,

anything we prove will be as true if we had made a different choice.
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Finite support

Kit Fine pointed out in his book on arbitrary objects that arbitrary objects

need not be independent of each other. For example, ‘n’ and ‘2 ∗ n’ are

two ‘arbitrary numbers’, but 2 ∗ x is guaranteed to be precisely twice as

large as n; they are connected.

FM sets achieves a similar effect using support.

Say that S ⊆ A supports x when: If π(a) = a for all a ∈ S, then

π · x = x.

For example: {a} supports a and supports A \ {a} = {b, c, d, . . .}.

(If π(a) = a then π · (A \ {a}) = A \ {a}.)
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Finite support

X is finitely supported when X has some finite supporting set.

For example {a} and A \ {a} are finitely supported, by {a}.

{{a}, {{a}, {b}}} is finitely supported by {a, b}.

A set of ‘every other atom’ {a, c, e, g, . . .} is not finitely supported. No

matter what finite set S we choose, we can permute atoms outside of S.
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Finite support

Write a#x when x is supported by some S and a 6∈ S.

This gives a concrete model of the notion of dependence considered by

Kit Fine. Think of a#x as ‘x does not depend on a’.
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Substitution

If we can define a notion of substitution on FM sets, then this has

philosophical implications.

It suggests that atoms are arbitrary in the sense that they can be

instantiated to other elements.
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Substitution

We belong to a technical field. The definition of substitution in full

generality is highly technical. We hope that, with time, we will simplify

the presentation.

However this is very much in keeping with the rest of set theory, which

was always intended as a technical way to implement basic

mathematical ideas.

The underlying ideas of our substitution action are quite simple. We will

conclude with some examples.
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Substitution

a[a7→x] = x b[a7→x] = x

A[a7→x] = {a, b, c, d, . . .} = A (a#A).

{a, b}[a7→x] = {x, b}.

{a, {b}, {c}, {d}, {e}, . . .}[a7→{a, b, c}] =
{{a, b, c}, {d}, {e}, . . .}.

Note the capture-avoidance here; we drop {c} because it clashes with

the c in {a, b, c}.
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Substitution

{{a}, {b}, {c}, {d}, {e}, . . .}[a7→{a, b, c}] =
{{a}, {b}, {c}, {d}, {e}, . . .}.

(a#{{a}, {b}, {c}, {d}, {e}, . . .})
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Substitution

(A ∪ {{b}})[a7→{a, b, c}] = A ∪ {{b}}.

(a#A ∪ {{b}})

(A ∪ {{b}})[b 7→{a, b, c}] = A ∪ {{{a, b, c}}}.

We do not touch the b ∈ A, because b#A.
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Future work

It is natural to give semantics to propositional logic using sets; the

denotation of a proposition is a set.

In FM sets, sets have a support of atoms, which we interpret as being

the arbitrary elements they depend on. Substitution only affects atoms

in the support.

So we should be able to give semantics to predicate logic using FM

sets; the denotation of a predicate is a set; the free variables of the

predicate are reflected in how atoms occur in that set.

∀a.x is just
⋂
{x[a7→y]} for some suitable collection of y.

∃a.x is just
⋃
{x[a7→y]} for some suitable collection of y.
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