"SN|NdJed-Y Japlo-yy[ey-e-pue-omL

Two-and-a-halfth-order lambda-calculus

Murdoch J. Gabbay

WEFLP, Siena, Italy
Friday 4 July 2008

Joint work with Dominic Mulligan

http://www.gabbay.org.uk
http://www.macs.hw.ac.uk/~dpm8/

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

Many of the basic systems of computer science, such as the
lambda-calculus, first-order logic, or the pi-calculus, admit natural
specifications involving

® object-level variables (‘level 1"),
e meta-level variables (‘level 2’), and
e freshness conditions.

For example:

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

Two levels

e)\-calculus: (A\x. r)[yr—>t] Ax.(r|y—t]|) if xis fresh for ¢
r If x is fresh for r

)
e T-calculus: ve.(P|Q)=P |vz.Q if z is fresh for P
e First-order logic: Vz.(¢p =) =¢ = Vr.ap if xisfresh for ¢

e)\-calculus: Ax.(rx

These informal statements mention two levels of variable; level 1
object-variables x, y and level 2 meta-variables r, t, P, (), @, 1.

Capture-avoidance conditions are (freshness) constraints relating level 1
variables and the values that level 2 variables may assume.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

Meta-variables are naturally substituted with capturing substitution.
Consider the following quote:

“Set 1 to Ty in AyAx.r;
obtain A\y.\x.xy.”

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

This motivates a A-calculus which is two copies of the \-calculus glued
together:

e At level 1, the ‘object-level’ calculus, has level 1 variables (atoms)
a,b,c,x,y,z,....

e Atlevel 2, the ‘meta-level’ calculus, has level 2 variables (unknowns)

X.Y.Z,R,T,...

e Within each level (level 1, level 2), a- and 3-conversion are as
standard.

° levels, level 2 3-reduction does not avoid capture by level
1 A-abstractions, modelling informal practice. For example ...

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

Level 1 and level 2

“Set 1 to Y in Ay.Ax.r, obtain A\y.\z.xy”
IS modelled by:
(AR Ay z.R)(zy) — Ay Azx.(xy)

Note that the -reduction of K does not avoid capture.

This cannot be directly expressed in the ‘ordinary’ A-calculus, where
(3-reduction always avoids capture:

(Ar Ay x.r)(xy) — Ay 2. (xy)

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

The A-calculus, first- and higher-order logic, and the 7-calculus have
been well-studied.

The common language in which we study them — if one such language
exists — has not been well-studied, or even agreed upon.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

A

There are several reasons to study a two-level A-calculus:

e |t models informal practice, formalises it, and makes it amenable to
study.

e [t does not require a logical framework (cf. HOAS; this gives you
HOAS terms, but requires you to use a HOAS framework).

e The A-calculus can be used as the basis of logics and
theorem-provers.

A two-level A-calculus is a step towards building two level logics and
theorem-provers which model informal practice in new ways.

Speculative examples follow ...

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

We indicate types with subscripts:

o VP,.(a,#P, = P, = Va,.P,)

Here o is a type of truth-values. V is short for VA where V is a
constant symbol. # is short for #\ where # is a constant symbol
Intended to internalise the nominal freshness judgement. This
models ‘for all ¢, if a & fv(¢®) then ¢ = Va.¢'.

® VXQ.(ag#Xa =)\ag.(Xaag) = Xa)
Here = is a constant symbol, written infix. o and (3 are intended to

be arbitrary types. This models n-equivalence (extensionality) at
level 1.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

o VP,.(Nap.—P,) < —WNay.P,.

Here W is short for I\ where W is a constant symbol intended to
iInternalise the Gabbay-Pitts ‘new’ quantifier [?]. — and < are
constant symbols. A is a ‘type of atoms’ with no term-formers. This
models the self-duality of /1.

The axioms have mathematical force because they have been studied Iin
previous work with level 2 variables but (since nominal terms have no
AX) without a level 2 quantification explicitly represented in the syntax.

0T

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

1T

Capture-avoiding substitution and all that surrounds in (A, V, ...) is
well-studied.

Capturing substitution and what surrounds it, is not so well-studied. This
IS a source of difficult, interesting, and virgin mathematical problems.

This work is also part of a broader enquiry into names; it gives a
functional semantics to nominal terms unknowns.

‘Nominal terms’ are a ‘one-and-a-halfth’ order system. Nominal terms
have level 1 variables (atoms) and level 2 variables (unknowns).
Nominal terms give level 2 variables no mathematical semantics. You
can think of two-and-a-halfth order \-calculus as ‘functional semantics
for nominal terms unknowns’ — an operational one.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

A

That concludes the first half of my talk, designed to motivate and give
background and informal intuitions.

In the second half | will sketch the system in more technical detail.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

€T

Syntax of two-and-a-halfth-order A-calculus

Fixsetsa,b,c,...and X, Y, Z, ... of level 1 and level 2 variables.

A permutation 7 is a finitely supported bijection of level 1 variables.
‘Finitely supported’ means 7(a) = a for all but finitely many level 1
variables.

Define syntax by:
r,s, tyu,v = a | - X | dar | AXor | rr

This is two A-calculi, level 1 at Aa, level 2 at A.X, glued together by
being in the one syntax and joined at a shared application.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

VT

Level 2 interacting with level 1

“Set { to be x in Ax.t” is modelled by the reduction

(AX.(Aa.X))a — (Aa. X)X :=a] = Aa.a.

“Set t to be y in Ax.t” is modelled by the reduction

(AX.(Aa.X))b — (Aa.X)[X :=b] = Aa.b.

Within a single level everything is as usual:

(Ab.(Aa.b))a —(Aa.b)[b—a] — Aa’.(b[b—al]) — A\d'.a

AY.QX.Y)NX —AXY)[Y = X] = A\ X' .(Y[Y :

X])

AX'.X.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

qT

Free level 2 variables of

fola) ={}r fo(r-X) ={X}
fo(r'r) = fo(r') U fo(r)
fo(ra.r) = fo(r) fo(AX.r) = fo(r) \{X}

We all know that we need this to express capture-avoidance conditions
of level 2 substitution:

Level 2 substitution

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

LT

It is not clear what the free level 1 variables of X in Aa..X are. If we
decide fv(X) = () then we a-convert as follows

Aa. X =, Ab.X
and we get wrong results because, for example

(AX.Xa.X)a — Aa.a (AX.Mb.X)a — Ab.a.

Thus, X represent an ‘unknown element’ in a capturing sense, and so
has an unknown — an infinite — set of level 1 free variables (only finitely
many of which will ever be taken up by a given level 2 3-reduct).

The notion of ‘free level 1 variables’ is inverted to the notion of ‘level 1
freshness’ a#r:

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

8T

Freshness

A a#r
b A
Ao TP N ey BT — gy AHAD)
(a)#X € A A a#tr AF a#tr
A a#r-X (a#X) A a#tr'r (a#app)

Aya#X Fr(a)#rr (X € A)
A rm(a)#m-(AX.r)

(a#EAX)

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

6T

An example freshness derivation, including level 2 abstraction

(a#X)
(a#£A\b)
(a#EAX)

a#X Fa#tX
a#X F at#Ab.X
= a#EAX.AD.X

What's interesting here is that a#£\b..X is not derivable (unless we
assume a#X), but a#EAX . Ab. X is.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

0¢

Permutation

m-a=mn(a) w (7 -X)=(ron') X
m-(r'r)=(r-r)xw-r) 7w (Aa.r)=Ar(a).(7-7)
T (AXr)= (A X.m-r[X =7 X])
Then define cx-equivalence as follows:
b#r = Aa.r =4 Ab.(ba) - r.

We use use level 1 permutation rather than level 1 substitution because
It interacts smoothly with level 1 and level 2 abstraction.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

T¢

Congruence

AFrpos (>)a) AFrps Al—tbu()
>AQ >a
AF da.rv \a.s AFrt>su PP
AFr>s (X &A) AFreos AFa#s A b#s
(>AX) (>a)

AFAX.r>AX.s AFre(abd)-s

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

44

Reductions

a#tr
(Pa) (5#)

rla—t] — r

ala—t] — t

(52) gl
(r'r)[a—t] — (r'[a—t])r

level(r') = 1

(AX.7)t — r[X =] (62app)

, , (Blapp)
(r'r)|a—t] — (r'la—t])(rla—t])
bkt (X & fu(t))

(BA1) BA2
(A7) [ar—t] — Ab.(r[art]) AX.r)[a—t] — AX.(rlarst]) #A2)

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

€c

Two (-rules

level(r’) = 1 means ‘r’ does not mention any level 2 variables’.
(Blapp) and (G2app) can be viewed as two parts of a single rule:
level(r’) =1 or a#r

(r'r)la—t] — (r'[a—t])(rla—1])

If level(r") = 1 and A F a#r we join (f1lapp) and (S2app) with
(B#).

We know what goes wrong if we relax these conditions (see the paper)
but we will probably not fully understand this until we understand a
denotational semantics.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

ve

I'd like to reiterate the three reasons I'm doing this:

e This is an opportunity to ask some really fundamental mathematical
questions. Essentially, the A-calculus and associated mathematics
have studied capture-avoiding substitution half to death, but
capturing substitution, its syntax and semantics, is completely virgin
territory.

e There should be a theorem-provers offering a ‘nominal’ model of
Informal practice.

Informal practice has two levels of variable and freshness conditions
— there should be a theorem-prover that does this, too.

'SN|N2[e-\ JapJo-yi[ey-e-pue-omL

G¢

Conclusions

e Nominal terms have been studied (they have good computational
properties). The question of mathematical semantics of unknowns
X (level 2 variables) has remained an open problem for several
years. This paper gives an answer — not the final or only answer
but it’s the start of something which will run for a while.

Further reading:
e Nominal terms [gabbay:nomu-jv]
e Lambda context calculus [gabbay:lamcc]
e Two-and-a-halfth order lambda-calculus [gabbay:twoaah]

e One-and-a-halfth order logic [gabbay:oneaah-jv]

http://www.gabbay.org.uk/papers.html#nomu-jv
http://www.gabbay.org.uk/papers.html#lamcc
http://www.gabbay.org.uk/papers.html#twoaah
http://www.gabbay.org.uk/papers.html#oneaah-jv

