Two-and-a-halfth-order lambda-calculus

Murdoch J. Gabbay

WFLP, Siena, Italy
Friday 4 July 2008
Joint work with Dominic Mulligan

What are two-and-a-half levels?

Many of the basic systems of computer science, such as the lambda-calculus, first-order logic, or the pi-calculus, admit natural specifications involving

- object-level variables ('level 1'),
- meta-level variables ('level 2'), and
- freshness conditions.

For example:

- λ-calculus: $\quad(\lambda x . r)[y \mapsto t]=\lambda x .(r[y \mapsto t])$ if x is fresh for t
- λ-calculus: $\quad \lambda x .(r x)=r \quad$ if x is fresh for r
- π-calculus: $\quad \nu x \cdot(P \mid Q)=P \mid \nu x \cdot Q \quad$ if x is fresh for P
- First-order logic: $\quad \forall x .(\phi \Rightarrow \psi)=\phi \Rightarrow \forall x . \psi \quad$ if x is fresh for ϕ

These informal statements mention two levels of variable; level 1 object-variables x, y and level 2 meta-variables r, t, P, Q, ϕ, ψ.

Capture-avoidance conditions are (freshness) constraints relating level 1 variables and the values that level 2 variables may assume.

Two levels

Meta-variables are naturally substituted with capturing substitution. Consider the following quote:
"Set r to $x y$ in $\lambda y \lambda x . r$; obtain $\lambda y . \lambda x . x y$."

Level 1 and level 2

This motivates a λ-calculus which is two copies of the λ-calculus glued together:

- At level 1 , the 'object-level' calculus, has level 1 variables (atoms) a, b, c, x, y, z, \ldots.
- At level 2, the 'meta-level' calculus, has level 2 variables (unknowns) X, Y, Z, R, T, \ldots.
- Within each level (level 1, level 2), α - and β-conversion are as standard.
- Between levels, level 2β-reduction does not avoid capture by level 1λ-abstractions, modelling informal practice. For example ...

Level 1 and level 2

"Set r to $x y$ in $\lambda y \cdot \lambda x . r$, obtain $\lambda y \cdot \lambda x . x y$ "

is modelled by:

$$
(\lambda R \cdot \lambda y \cdot \lambda x \cdot R)(x y) \rightarrow \lambda y \cdot \lambda x \cdot(x y)
$$

Note that the β-reduction of R does not avoid capture.
This cannot be directly expressed in the 'ordinary' λ-calculus, where β-reduction always avoids capture:

$$
(\lambda r \cdot \lambda y \cdot \lambda x \cdot r)(x y) \rightarrow \lambda y^{\prime} \cdot \lambda x^{\prime} \cdot(x y)
$$

The importance of having two levels

The λ-calculus, first- and higher-order logic, and the π-calculus have been well-studied.

The common language in which we study them - if one such language exists - has not been well-studied, or even agreed upon.

The importance of having a two level λ-calculus

There are several reasons to study a two-level λ-calculus:

- It models informal practice, formalises it, and makes it amenable to study.
- It does not require a logical framework (cf. HOAS; this gives you HOAS terms, but requires you to use a HOAS framework).
- The λ-calculus can be used as the basis of logics and theorem-provers.
A two-level λ-calculus is a step towards building two level logics and theorem-provers which model informal practice in new ways.
Speculative examples follow ...

Examples

We indicate types with subscripts:

- $\forall P_{o} .\left(a_{o} \# P_{o} \Rightarrow P_{o} \Rightarrow \forall a_{o} . P_{o}\right)$

Here o is a type of truth-values. \forall is short for $\forall \lambda$ where \forall is a constant symbol. \# is short for \# where \# is a constant symbol intended to internalise the nominal freshness judgement. This models 'for all ϕ, if $a \notin \mathrm{fv}(\phi)$ then $\phi \Rightarrow \forall a$. ϕ '.

- $\forall X_{\alpha} \cdot\left(a_{\beta} \# X_{\alpha} \Rightarrow \lambda a_{\beta} .\left(X_{\alpha} a_{\beta}\right)=X_{\alpha}\right)$

Here $=$ is a constant symbol, written infix. α and β are intended to be arbitrary types. This models η-equivalence (extensionality) at level 1.

Examples

- $\forall P_{o} .\left(И a_{\mathbb{A}} . \neg P_{o}\right) \Leftrightarrow \neg И a_{\mathbb{A}} . P_{o}$.

Here $И$ is short for $И \lambda$ where $И$ is a constant symbol intended to internalise the Gabbay-Pitts 'new' quantifier [?]. \neg and \Leftrightarrow are constant symbols. \mathbb{A} is a 'type of atoms' with no term-formers. This models the self-duality of $И$.

The axioms have mathematical force because they have been studied in previous work with level 2 variables but (since nominal terms have no λX) without a level 2 quantification explicitly represented in the syntax.

The importance of having two levels

Capture-avoiding substitution and all that surrounds in $(\lambda, \forall, \ldots)$ is well-studied.

Capturing substitution and what surrounds it, is not so well-studied. This is a source of difficult, interesting, and virgin mathematical problems.

This work is also part of a broader enquiry into names; it gives a functional semantics to nominal terms unknowns.
'Nominal terms' are a 'one-and-a-halfth' order system. Nominal terms have level 1 variables (atoms) and level 2 variables (unknowns).
Nominal terms give level 2 variables no mathematical semantics. You can think of two-and-a-halfth order λ-calculus as 'functional semantics for nominal terms unknowns' - an operational one.

Technical details

That concludes the first half of my talk, designed to motivate and give background and informal intuitions.

In the second half I will sketch the system in more technical detail.

Syntax of two-and-a-halfth-order λ-calculus

Fix sets a, b, c, \ldots and X, Y, Z, \ldots of level 1 and level 2 variables.
A permutation π is a finitely supported bijection of level 1 variables. 'Finitely supported' means $\pi(a)=a$ for all but finitely many level 1 variables.

Define syntax by:

$$
r, s, t, u, v::=a|\pi \cdot X| \lambda a . r|\lambda X . r| r r
$$

This is two λ-calculi, level 1 at λa, level 2 at λX, glued together by being in the one syntax and joined at a shared application.

Level 2 interacting with level 1

"Set t to be x in $\lambda x . t$ " is modelled by the reduction

$$
(\lambda X .(\lambda a . X)) a \rightarrow(\lambda a . X)[X:=a] \equiv \lambda a . a .
$$

"Set t to be y in $\lambda x . t$ " is modelled by the reduction

$$
(\lambda X .(\lambda a . X)) b \rightarrow(\lambda a . X)[X:=b] \equiv \lambda a . b
$$

Within a single level everything is as usual:

$$
\begin{aligned}
(\lambda b .(\lambda a . b)) a & \rightarrow(\lambda a . b)[b \mapsto a] \rightarrow \lambda a^{\prime} .(b[b \mapsto a]) \rightarrow \lambda a^{\prime} . a \\
(\lambda Y .(\lambda X . Y)) X & \rightarrow(\lambda X . Y)[Y:=X] \equiv \lambda X^{\prime} .(Y[Y:=X]) \equiv \lambda X^{\prime} . X .
\end{aligned}
$$

Free level 2 variables of

$$
\begin{gathered}
f v(a)=\{ \} \quad f v(\pi \cdot X)=\{X\} \\
f v\left(r^{\prime} r\right)=f v\left(r^{\prime}\right) \cup f v(r) \\
f v(\lambda a . r)=f v(r) \quad f v(\lambda X . r)=f v(r) \backslash\{X\}
\end{gathered}
$$

We all know that we need this to express capture-avoidance conditions of level 2 substitution:

Level 2 substitution

$$
\begin{gathered}
a[X:=t] \equiv a \quad(\pi \cdot X)[X:=t] \equiv \pi \cdot t \\
(\pi \cdot Y)[X:=t] \equiv \pi \cdot Y \quad(\lambda a \cdot r)[X:=t] \equiv \lambda a \cdot(r[X:=t]) \\
\left(r^{\prime} r\right)[X:=t] \equiv\left(r^{\prime}[X:=t]\right)(r[X:=t]) \\
(\lambda Y \cdot r)[X:=t] \equiv \lambda Y \cdot(r[X:=t]) \quad(Y \notin f v(t))
\end{gathered}
$$

Capture-avoidance at level 1

It is not clear what the free level 1 variables of X in $\lambda a . X$ are. If we decide $f v(X)=\emptyset$ then we α-convert as follows

$$
\lambda a \cdot X={ }_{\alpha} \lambda b \cdot X
$$

and we get wrong results because, for example

$$
(\lambda X . \lambda a . X) a \rightarrow \lambda a . a \quad(\lambda X . \lambda b . X) a \rightarrow \lambda b . a .
$$

Thus, X represent an 'unknown element' in a capturing sense, and so has an unknown - an infinite - set of level 1 free variables (only finitely many of which will ever be taken up by a given level 2β-reduct).

The notion of 'free level 1 variables' is inverted to the notion of 'level 1 freshness' $a \# r$:

Freshness

$$
\begin{gathered}
\frac{}{\Delta \vdash a \# b}(\mathbf{a} \# \mathbf{b}) \quad \overline{\Delta \vdash a \# \lambda a \cdot r}(\mathbf{a} \# \lambda \mathbf{a}) \quad \frac{\Delta \vdash a \# r}{\Delta \vdash a \# \lambda b \cdot r}(\mathbf{a} \# \lambda \mathbf{b}) \\
\frac{\pi^{-1}(a) \# X \in \Delta}{\Delta \vdash a \# \pi \cdot X}(\mathbf{a} \# \mathbf{X}) \quad \frac{\Delta \vdash a \# r^{\prime} \quad \Delta \vdash a \# r}{\Delta \vdash a \# r^{\prime} r}(\mathbf{a} \# \mathbf{a p p}) \\
\frac{\Delta, a \# X \vdash \pi(a) \# \pi \cdot r \quad(X \notin \Delta)}{\Delta \vdash \pi(a) \# \pi \cdot(\lambda X \cdot r)}(\mathbf{a} \# \lambda \mathbf{X})
\end{gathered}
$$

An example freshness derivation, including level 2 abstraction

$$
\frac{\overline{a \# X \vdash a \# X}}{\frac{a \# X \vdash a \# \lambda b \cdot X}{\vdash a \#}(\mathbf{a} \# \mathbf{X})}(\mathbf{a} \# \lambda \mathbf{b})
$$

What's interesting here is that $a \# \lambda b \cdot X$ is not derivable (unless we assume $a \# X$), but $a \# \lambda X . \lambda b . X$ is.

Permutation

$$
\begin{gathered}
\pi \cdot a \equiv \pi(a) \quad \pi \cdot\left(\pi^{\prime} \cdot X\right) \equiv\left(\pi \circ \pi^{\prime}\right) \cdot X \\
\pi \cdot\left(r^{\prime} r\right) \equiv\left(\pi \cdot r^{\prime}\right)(\pi \cdot r) \quad \pi \cdot(\lambda a . r) \equiv \lambda \pi(a) \cdot(\pi \cdot r) \\
\pi \cdot(\lambda X . r) \equiv\left(\lambda X . \pi \cdot r\left[X:=\pi^{-1} \cdot X\right]\right)
\end{gathered}
$$

Then define α-equivalence as follows:

$$
b \# r \Rightarrow \lambda a \cdot r={ }_{\alpha} \lambda b \cdot(b a) \cdot r .
$$

We use use level 1 permutation rather than level 1 substitution because it interacts smoothly with level 1 and level 2 abstraction.

Congruence

$$
\begin{array}{cc}
\frac{\Delta \vdash r \triangleright s}{\Delta \vdash \lambda a . r \triangleright \lambda a . s}(\triangleright \lambda \mathbf{a}) & \frac{\Delta \vdash r \triangleright s \quad \Delta \vdash t \triangleright u}{\Delta \vdash r t \triangleright s u}(\triangleright \mathbf{a p p}) \\
\frac{\Delta \vdash r \triangleright s \quad(X \notin \Delta)}{\Delta \vdash \lambda X . r \triangleright \lambda X . s}(\triangleright \lambda \mathbf{X}) & \frac{\Delta \vdash r \triangleright s \quad \Delta \vdash a \# s \quad \Delta \vdash b \# s}{\Delta \vdash r \triangleright(a b) \cdot s}(\triangleright \alpha)
\end{array}
$$

Reductions

$$
\begin{gathered}
\frac{a[a \mapsto t] \rightarrow t}{}(\beta \mathbf{a}) \frac{a \# r}{r[a \mapsto t] \rightarrow r}(\beta \#) \\
\frac{a \# r}{(\lambda X . r) t \rightarrow r[X:=t]}(\beta \mathbf{2}) \quad \frac{\operatorname{level}\left(r^{\prime}\right)=1}{\left(r^{\prime} r\right)[a \mapsto t] \rightarrow\left(r^{\prime}[a \mapsto t]\right) r}(\beta \mathbf{2 a p p}) \\
\frac{\left(r^{\prime} r\right)[a \mapsto t] \rightarrow\left(r^{\prime}[a \mapsto t]\right)(r[a \mapsto t])}{}(\beta \mathbf{1 a p p}) \\
\frac{(X \notin t v(t))}{(\lambda b . r)[a \mapsto t] \rightarrow \lambda b .(r[a \mapsto t])}(\beta \lambda \mathbf{1}) \frac{(1)}{(\lambda X . r)[a \mapsto t] \rightarrow \lambda X .(r[a \mapsto t])}(\beta \lambda \mathbf{2})
\end{gathered}
$$

Two β-rules

level $\left(r^{\prime}\right)=1$ means ' r ' does not mention any level 2 variables'.
($\beta \mathbf{1} \mathbf{a p p}$) and ($\beta \mathbf{2 a p p}$) can be viewed as two parts of a single rule:

$$
\frac{\text { level }\left(r^{\prime}\right)=1 \quad \text { or } \quad a \# r}{\left(r^{\prime} r\right)[a \mapsto t] \rightarrow\left(r^{\prime}[a \mapsto t]\right)(r[a \mapsto t])}
$$

If level $\left(r^{\prime}\right)=1$ and $\Delta \vdash a \# r$ we join ($\beta \mathbf{1 a p p}$) and ($\beta \mathbf{2} \mathbf{a p p}$) with ($\beta \#$).

We know what goes wrong if we relax these conditions (see the paper) but we will probably not fully understand this until we understand a denotational semantics.

Conclusions

I'd like to reiterate the three reasons I'm doing this:

- This is an opportunity to ask some really fundamental mathematical questions. Essentially, the λ-calculus and associated mathematics have studied capture-avoiding substitution half to death, but capturing substitution, its syntax and semantics, is completely virgin territory.
- There should be a theorem-provers offering a 'nominal' model of informal practice.

Informal practice has two levels of variable and freshness conditions - there should be a theorem-prover that does this, too.

Conclusions

- Nominal terms have been studied (they have good computational properties). The question of mathematical semantics of unknowns X (level 2 variables) has remained an open problem for several years. This paper gives an answer - not the final or only answer but it's the start of something which will run for a while.

Further reading:

- Nominal terms [gabbay:nomu-jv]
- Lambda context calculus [gabbay:lamcc]
- Two-and-a-halfth order lambda-calculus [gabbay:twoaah]
- One-and-a-halfth order logic [gabbay:oneaah-jv]

