
Two-and-a-halfth-order lambda-calculus

Murdoch J. Gabbay

WFLP, Siena, Italy
Friday 4 July 2008

Joint work with Dominic Mulligan

Tw
o-and-a-halfth-order

λ
-calculus.

1

http://www.gabbay.org.uk
http://www.macs.hw.ac.uk/~dpm8/

What are two-and-a-half levels?

Many of the basic systems of computer science, such as the

lambda-calculus, first-order logic, or the pi-calculus, admit natural

specifications involving

• object-level variables (‘level 1’),

• meta-level variables (‘level 2’), and

• freshness conditions.

For example:

Tw
o-and-a-halfth-order

λ
-calculus.

2

Two levels

• λ-calculus: (λx.r)[y 7→t] = λx.(r[y 7→t]) if x is fresh for t

• λ-calculus: λx.(rx) = r if x is fresh for r

• π-calculus: νx.(P | Q) = P | νx.Q if x is fresh for P

• First-order logic: ∀x.(φ⇒ ψ) = φ⇒ ∀x.ψ if x is fresh for φ

These informal statements mention two levels of variable; level 1

object-variables x, y and level 2 meta-variables r, t, P,Q, φ, ψ.

Capture-avoidance conditions are (freshness) constraints relating level 1

variables and the values that level 2 variables may assume.

Tw
o-and-a-halfth-order

λ
-calculus.

3

Two levels

Meta-variables are naturally substituted with capturing substitution.

Consider the following quote:

“Set r to xy in λyλx.r;

obtain λy.λx.xy.”

Tw
o-and-a-halfth-order

λ
-calculus.

4

Level 1 and level 2

This motivates a λ-calculus which is two copies of the λ-calculus glued

together:

• At level 1, the ‘object-level’ calculus, has level 1 variables (atoms)

a, b, c, x, y, z,

• At level 2, the ‘meta-level’ calculus, has level 2 variables (unknowns)

X,Y,Z,R, T,

• Within each level (level 1, level 2), α- and β-conversion are as

standard.

• Between levels, level 2 β-reduction does not avoid capture by level

1 λ-abstractions, modelling informal practice. For example . . .

Tw
o-and-a-halfth-order

λ
-calculus.

5

Level 1 and level 2

“Set r to xy in λy.λx.r, obtain λy.λx.xy”

is modelled by:

(λR.λy.λx.R)(xy) → λy.λx.(xy)

Note that the β-reduction of R does not avoid capture.

This cannot be directly expressed in the ‘ordinary’ λ-calculus, where

β-reduction always avoids capture:

(λr.λy.λx.r)(xy) → λy′.λx′.(xy)

Tw
o-and-a-halfth-order

λ
-calculus.

6

The importance of having two levels

The λ-calculus, first- and higher-order logic, and the π-calculus have

been well-studied.

The common language in which we study them — if one such language

exists — has not been well-studied, or even agreed upon.

Tw
o-and-a-halfth-order

λ
-calculus.

7

The importance of having a two level λ-calculus

There are several reasons to study a two-level λ-calculus:

• It models informal practice, formalises it, and makes it amenable to

study.

• It does not require a logical framework (cf. HOAS; this gives you

HOAS terms, but requires you to use a HOAS framework).

• The λ-calculus can be used as the basis of logics and

theorem-provers.

A two-level λ-calculus is a step towards building two level logics and

theorem-provers which model informal practice in new ways.

Speculative examples follow . . .

Tw
o-and-a-halfth-order

λ
-calculus.

8

Examples

We indicate types with subscripts:

• ∀Po.(ao#Po ⇒ Po ⇒ ∀ao.Po)

Here o is a type of truth-values. ∀ is short for ∀λ where ∀ is a

constant symbol. # is short for #λ where # is a constant symbol

intended to internalise the nominal freshness judgement. This

models ‘for all φ, if a 6∈ fv(φ) then φ⇒ ∀a.φ’.

• ∀Xα.(aβ#Xα ⇒ λaβ .(Xαaβ) = Xα)

Here = is a constant symbol, written infix. α and β are intended to

be arbitrary types. This models η-equivalence (extensionality) at

level 1.

Tw
o-and-a-halfth-order

λ
-calculus.

9

Examples

• ∀Po.(NaA.¬Po) ⇔ ¬ NaA.Po.

Here Nis short for Nλ where Nis a constant symbol intended to

internalise the Gabbay-Pitts ‘new’ quantifier [?]. ¬ and ⇔ are

constant symbols. A is a ‘type of atoms’ with no term-formers. This

models the self-duality of N.

The axioms have mathematical force because they have been studied in

previous work with level 2 variables but (since nominal terms have no

λX) without a level 2 quantification explicitly represented in the syntax.

Tw
o-and-a-halfth-order

λ
-calculus.

10

The importance of having two levels

Capture-avoiding substitution and all that surrounds in (λ, ∀, . . .) is

well-studied.

Capturing substitution and what surrounds it, is not so well-studied. This

is a source of difficult, interesting, and virgin mathematical problems.

This work is also part of a broader enquiry into names; it gives a

functional semantics to nominal terms unknowns.

‘Nominal terms’ are a ‘one-and-a-halfth’ order system. Nominal terms

have level 1 variables (atoms) and level 2 variables (unknowns).

Nominal terms give level 2 variables no mathematical semantics. You

can think of two-and-a-halfth order λ-calculus as ‘functional semantics

for nominal terms unknowns’ — an operational one.

Tw
o-and-a-halfth-order

λ
-calculus.

11

Technical details

That concludes the first half of my talk, designed to motivate and give

background and informal intuitions.

In the second half I will sketch the system in more technical detail.

Tw
o-and-a-halfth-order

λ
-calculus.

12

Syntax of two-and-a-halfth-order λ-calculus

Fix sets a, b, c, . . . and X,Y,Z, . . . of level 1 and level 2 variables.

A permutation π is a finitely supported bijection of level 1 variables.

‘Finitely supported’ means π(a) = a for all but finitely many level 1

variables.

Define syntax by:

r, s, t, u, v ::= a | π ·X | λa.r | λX.r | rr

This is two λ-calculi, level 1 at λa, level 2 at λX , glued together by

being in the one syntax and joined at a shared application.

Tw
o-and-a-halfth-order

λ
-calculus.

13

Level 2 interacting with level 1

“Set t to be x in λx.t” is modelled by the reduction

(λX.(λa.X))a → (λa.X)[X := a] ≡ λa.a.

“Set t to be y in λx.t” is modelled by the reduction

(λX.(λa.X))b → (λa.X)[X := b] ≡ λa.b.

Within a single level everything is as usual:

(λb.(λa.b))a →(λa.b)[b 7→a] → λa′.(b[b 7→a]) → λa′.a

(λY.(λX.Y))X →(λX.Y)[Y := X] ≡ λX ′.(Y [Y := X]) ≡ λX ′.X.

Tw
o-and-a-halfth-order

λ
-calculus.

14

Free level 2 variables of

fv(a) = {} fv(π ·X) = {X}

fv(r′r) = fv(r′) ∪ fv(r)

fv(λa.r) = fv(r) fv(λX.r) = fv(r) \ {X}

We all know that we need this to express capture-avoidance conditions

of level 2 substitution:

Tw
o-and-a-halfth-order

λ
-calculus.

15

Level 2 substitution

a[X := t] ≡ a (π ·X)[X := t] ≡ π · t

(π · Y)[X := t] ≡ π · Y (λa.r)[X := t] ≡ λa.(r[X := t])

(r′r)[X := t] ≡ (r′[X := t])(r[X := t])

(λY.r)[X := t] ≡ λY.(r[X := t]) (Y 6∈ fv(t))

Tw
o-and-a-halfth-order

λ
-calculus.

16

Capture-avoidance at level 1

It is not clear what the free level 1 variables of X in λa.X are. If we
decide fv(X) = ∅ then we α-convert as follows

λa.X =α λb.X

and we get wrong results because, for example

(λX.λa.X)a → λa.a (λX.λb.X)a → λb.a.

Thus, X represent an ‘unknown element’ in a capturing sense, and so
has an unknown — an infinite — set of level 1 free variables (only finitely
many of which will ever be taken up by a given level 2 β-reduct).

The notion of ‘free level 1 variables’ is inverted to the notion of ‘level 1
freshness’ a#r:

Tw
o-and-a-halfth-order

λ
-calculus.

17

Freshness

(a#b)
∆ ⊢ a#b

(a#λa)
∆ ⊢ a#λa.r

∆ ⊢ a#r
(a#λb)

∆ ⊢ a#λb.r

π-1(a)#X ∈ ∆
(a#X)

∆ ⊢ a#π·X

∆ ⊢ a#r′ ∆ ⊢ a#r
(a#app)

∆ ⊢ a#r′r

∆, a#X ⊢ π(a)#π·r (X 6∈ ∆)
(a#λX)

∆ ⊢ π(a)#π·(λX.r)

Tw
o-and-a-halfth-order

λ
-calculus.

18

An example freshness derivation, including level 2 abstraction

(a#X)
a#X ⊢ a#X

(a#λb)
a#X ⊢ a#λb.X

(a#λX)
⊢ a#λX.λb.X

What’s interesting here is that a#λb.X is not derivable (unless we

assume a#X), but a#λX.λb.X is.

Tw
o-and-a-halfth-order

λ
-calculus.

19

Permutation

π · a ≡ π(a) π · (π′ ·X) ≡ (π ◦ π′) ·X

π · (r′r) ≡ (π · r′)(π · r) π · (λa.r) ≡ λπ(a).(π · r)

π · (λX.r) ≡ (λX.π · r[X := π-1 ·X])

Then define α-equivalence as follows:

b#r ⇒ λa.r =α λb.(b a) · r.

We use use level 1 permutation rather than level 1 substitution because

it interacts smoothly with level 1 and level 2 abstraction.

Tw
o-and-a-halfth-order

λ
-calculus.

20

Congruence

∆ ⊢ r ⊲ s
(⊲λa)

∆ ⊢ λa.r ⊲ λa.s

∆ ⊢ r ⊲ s ∆ ⊢ t ⊲ u
(⊲app)

∆ ⊢ rt ⊲ su

∆ ⊢ r ⊲ s (X 6∈ ∆)
(⊲λX)

∆ ⊢ λX.r ⊲ λX.s

∆ ⊢ r ⊲ s ∆ ⊢ a#s ∆ ⊢ b#s
(⊲α)

∆ ⊢ r ⊲ (a b) · s

Tw
o-and-a-halfth-order

λ
-calculus.

21

Reductions

(βa)
a[a7→t] → t

a#r
(β#)

r[a7→t] → r

(β2)
(λX.r)t → r[X := t]

a#r
(β2app)

(r′r)[a7→t] → (r′[a7→t])r

level(r′) = 1
(β1app)

(r′r)[a7→t] → (r′[a7→t])(r[a7→t])

b#t
(βλ1)

(λb.r)[a7→t] → λb.(r[a7→t])

(X 6∈ fv(t))
(βλ2)

(λX.r)[a7→t] → λX.(r[a7→t])

Tw
o-and-a-halfth-order

λ
-calculus.

22

Two β-rules

level(r′) = 1 means ‘r′ does not mention any level 2 variables’.

(β1app) and (β2app) can be viewed as two parts of a single rule:

level(r′) = 1 or a#r

(r′r)[a7→t] → (r′[a7→t])(r[a7→t])

If level(r′) = 1 and ∆ ⊢ a#r we join (β1app) and (β2app) with

(β#).

We know what goes wrong if we relax these conditions (see the paper)

but we will probably not fully understand this until we understand a

denotational semantics.

Tw
o-and-a-halfth-order

λ
-calculus.

23

Conclusions

I’d like to reiterate the three reasons I’m doing this:

• This is an opportunity to ask some really fundamental mathematical

questions. Essentially, the λ-calculus and associated mathematics

have studied capture-avoiding substitution half to death, but

capturing substitution, its syntax and semantics, is completely virgin

territory.

• There should be a theorem-provers offering a ‘nominal’ model of

informal practice.

Informal practice has two levels of variable and freshness conditions

— there should be a theorem-prover that does this, too.

Tw
o-and-a-halfth-order

λ
-calculus.

24

Conclusions

• Nominal terms have been studied (they have good computational

properties). The question of mathematical semantics of unknowns

X (level 2 variables) has remained an open problem for several

years. This paper gives an answer — not the final or only answer

but it’s the start of something which will run for a while.

Further reading:

• Nominal terms [gabbay:nomu-jv]

• Lambda context calculus [gabbay:lamcc]

• Two-and-a-halfth order lambda-calculus [gabbay:twoaah]

• One-and-a-halfth order logic [gabbay:oneaah-jv]

Tw
o-and-a-halfth-order

λ
-calculus.

25

http://www.gabbay.org.uk/papers.html#nomu-jv
http://www.gabbay.org.uk/papers.html#lamcc
http://www.gabbay.org.uk/papers.html#twoaah
http://www.gabbay.org.uk/papers.html#oneaah-jv

