
The nature of sets in computer science

Murdoch J. Gabbay, www.gabbay.org.uk

King’s College London
Monday 29 September 2008

Thanks to Maribel Fernández

The nature of sets in computer science. 1



What is this talk about?

In this talk I’ll give an overview of the mathematical foundations of

computer science.

I’m Murdoch James Gabbay. Everybody calls me Jamie.

I do research in theoretical computer science. Maribel Fernández was

my boss for a while.

I expect that you will find this talk ridiculously simple and obvious

. . . then perhaps you’ll blink, and suddenly it’ll be ridiculously

incomprehensible. That is typical of this kind of mathematics; do not be

afraid to interrupt me with questions.

The nature of sets in computer science. 2



What is this talk about?

Welcome to my seminar in Advanced Research Topics.

I can’t predict who’ll be in my audience, so let me know if you know this

stuff. If I get to the end of my slides, this means you’re expert and I’ll

switch to the blackboard.

The nature of sets in computer science. 3



What is a set?

A set is a collection of objects.

{Plato, Socrates, Aristotle} is a subset of the set of hellenic

philosophers.

{Jamie, Maribel, Michael, Dov} is a subset of the set of people who

have worked at King’s.

{King’s College} is a subset of the set of world-class academic

institutions.

{} (the empty set ∅) is a subset of . . . any other set.

We use sets all the time, informally.

The nature of sets in computer science. 4



Sets as a mathematical foundation

All the sets above were sets of concrete objects, or at least, they are

sets of entities which we might associate with something we can see,

touch, hear, taste, or smell. For example, it is debatable whether one

should identify Jamie with Jamie’s body, but at least the body gives us a

useful illusion that Jamie is a single, definite thing that we can put in a

set.

What about numbers? Groups and fields? λ-terms? Abstract syntax?

How do we model them?

Do they exist? Does mathematics exist?

What a simplest world in which we can practice mathematics?

The nature of sets in computer science. 5



Ordinals

A well-ordered collection is a carrier collection with an order on it <
which is transitive, total, and well-founded.

Transitive: x < y and y < z imply x < z.

Total: either x < y or y < x.

Well-founded: x1 > x2 > x3 > x4 > . . . is impossible.

(No infinite descending chains.)

An ordinal is an isomorphism class of well-ordered collections. That is,

we take the carrier up to isomorphism.

(Ordinals were introduced by Cantor.)

The nature of sets in computer science. 6



Pictures of ordinals

Examples of ordinals (in ascending order) are:

• The ordinal 1, pictured as ‘•’.

• The ordinal 2, pictured as ‘• < •’.

• The ordinal ω, pictured as ‘• < • < • < . . .’ (the natural numbers,

ordered in their natural order, are in this equivalence class).

• The ordinal ω + 1, pictured as ‘(• < • < • < . . .) < •’ (a
countable list of elements ‘going on forever’, plus one more element
greater than all others).

• ‘The first uncountable ordinal’ (the least upper bound of all the
countable ordinals). As is standard, we write this ordinal ω1.

The nature of sets in computer science. 7



The cumulative hierarchy U

Let’s build a mathematical universe. We believe in ordinals: let α and β
range over ordinals.

• We believe in the empty set: ∅ ∈ U1.

• We believe in sets: if U ⊆ Uα and α < β then U ∈ Uβ .

If x ∈ U write rank(x) for the least ordinal α such that x ∈ Uα. Such

a least ordinal exists, since by assumption there is no infinite

descending chain of ordinals.

The nature of sets in computer science. 8



The cumulative hierarchy U

Let’s just prove that by contradiction. Suppose x ∈ U and suppose

there is no unique least ordinal α such that x ∈ Uα.

x ∈ Uα for some α.

Choose any α′ < α such that x ∈ Uα′ .

Iterate this, so we obtain an infinite descending chain. Contradiction.

The nature of sets in computer science. 9



Von Neumann numerals

• We identify 0 with ∅.

• We identify i + 1 with i ∪ {i}.

So

1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2},

and in general

n = {n′ | n′ < n}.

rank(n) = n + 1. That is, n ∈ Un+1.

Write N for {0, 1, 2, 3, . . .}.

n ∈ Un+1 for all n, so N ⊆ Uω . So rank(N) = ω + 1.

The nature of sets in computer science. 10



An example

0 = ∅ ∈ U1

0 ∈ U2 1 = {0} ∈ U2

1 ∈ U3 2 = {1, 0} = {{{}}, {}} ∈ U3 {{{}}} ∈ U3
...

N = {0, 1, 2, 3, 4, . . .} ∈ Uω+1

N ∪ {N} ∈ Uω+2

Set of rational numbers Q ∈ Uω+3
...

Set of real numbers R ∈ Uω1+1

The nature of sets in computer science. 11



Kuratowski pairs

Kuratowski pairs: (x, y) = {{x}, {x, y}}.

rank((x, y)) = max(rank(x), rank(y)) + 2.

We can identify the ‘first’ element x of a Kuratowski pair z by looking for

the element {x} ∈ z. We can then identify the ‘second’ element y by

looking at the other element y′ ∈ z.

• If y′ = {y} then x = y.

• Otherwise, y′ = {x, y}.

If X and Y are sets, write X × Y for {(x, y) | x ∈ X, y ∈ Y }.

The nature of sets in computer science. 12



Disjoint sum

Write X + Y for {(0, x) | x ∈ X} ∪ {(1, y) | y ∈ Y }.

Write (0, x) as inl(x) and (1, y) as inr(y).

The nature of sets in computer science. 13



Numbers

We can identify a rational number p as

{(n,m) | n,m ∈ N, p = n/m}.

Write Q for the set of rational numbers. We can identify a real number r
as a Dedekind cut

({p ∈ Q | p < r}, {q ∈ Q | r < q}).

Write R for the set of rational numbers.

It should now be evident how to model complex numbers, vector

spaces, groups, rings, fields, and loads more.

The nature of sets in computer science. 14



Functions

Do functions exist? Certainly.

If X and Y are sets, write X → Y for the set of functional relations
between X and Y .

Let’s write that out in first-order logic. f ∈ X → Y when

• f ⊆ X × Y (f is a graph).

• ∀x, y, y′.((x, y) ∈ f ∧ (x, y′) ∈ f) ⇒ y = y′.
(f is functional.)

• ∀x ∈ X.∃y.(x, y) ∈ f .
(f is total.)

We write f(x) for the unique y such that (x, y) ∈ f .

The nature of sets in computer science. 15



Foundations of mathematics

If you’re with me so far, then you’ve had a concise introduction to the

foundations of mathematics.

Assuming that

• ∅ exists, and that

• if you can form a subset, then you can form a set which is that

subset,

is assuming enough to build a rich mathematical universe.

The nature of sets in computer science. 16



Adding names

Jamie, Maribel, and other names, do not have sets structure. They are

just names.

So we enrich our cumulative hierarchy with names. Suppose

A = {a, b, c, d, . . .} is a countably infinite collection of atoms.

Define a new sets hierarchy by:

The nature of sets in computer science. 17



A cumulative hierarchy with names

1. U0 = A.

2. α < β, β < ω, U ⊆ Uα, and U is finite, imply U ∈ Uβ .

3. α < β, ω ≤ β, and U ⊆ Uα, imply U ∈ Uβ .

Call an element that is not an atom a set.

If X is a set then X = {x | x ∈ X}. This is not the case of atoms.

For example a 6= {x | x ∈ a} = ∅.

The nature of sets in computer science. 18



A cumulative hierarchy with names

We can draw the following diagram:

a ∈ U0 b ∈ U0

∅ ∈ U1 {a} ∈ U1 {a, b} ∈ U1

{∅} ∈ U2 {{a}, {a, b}} ∈ U2
...

A ∈ Uω+1

A ∪ {A} ∈ Uω+1
...

Set of real numbers ∈ Uω1+1

The nature of sets in computer science. 19



A cumulative hierarchy with names

A word on our treatment of A.

We could unify the second and third clauses of the inductive definition

above to

α < β and U ⊆ Uα imply U ∈ Uβ (for any α and β).

However, then A ∈ U1.

Since we take A to be countably infinite, this means that A, an infinite

set, appears in what is usually taken to be the finite initial segment of

the cumulative hierarchy.

This is not wrong but we exert ourselves and preserve the standard

intuition that ‘Uω is the collection of finite sets’.

The nature of sets in computer science. 20



Permutations

Given a and b write (b a) for the function which ‘swaps’ a and b:

(b a)(a) = b (b a)(b) = a (b a)(c) = c

Extend this function to the sets universe as

(b a)X = {(b a)x | x ∈ X}.

Intuitively, (b a)x is x, in which a and b are swapped.

The nature of sets in computer science. 21



The Gabbay-Pitts notion of the support of a set

Write supp(x) for the set of a ∈ A such that

{b | b 6= a ∧ (b a)x 6= x} is infinite.

Say a is in the support of x. For example a ∈ supp(a) since

{b | b 6= a ∧ (b a)a 6= a} = {b | b 6= a}

is infinite. a 6∈ supp(A) since

{b | b 6= a ∧ (b a)A 6= A} = ∅

is finite.

The nature of sets in computer science. 22



Examples

Q1. Is a ∈ supp({a})?

Q2. Is a ∈ supp(A \ {a})?

The nature of sets in computer science. 23



Examples

A1. Yes. a ∈ supp({a}).

A2. Yes. a ∈ supp(A \ {a}).

Note that a 6∈ a yet a ∈ supp(a).

Note that a ∈ A yet a 6∈ supp(A).

Note that a 6∈ A \ {a} yet a ∈ supp(A \ {a}).

a ∈ supp(x) measures whether a is ‘conspicuous’ in x, either by its

presence or its absence.

The nature of sets in computer science. 24



Atoms-abstraction

Say that x has finite support when supp(x) is finite.

Q3. Does A have finite support?

Q4. Does a have finite support?

Q5. Does comb = {a, c, e, g, . . .} (the set of ‘every other atom’) have

finite support?

The nature of sets in computer science. 25



A model of α-abstraction

Suppose that x has finite support. Suppose b 6= a. Define

[a]x = {(a, x)} ∪ {(b, (b a)x | b 6= a ∧ b 6∈ supp(x)}.

[a]x = [b]y if and only if for some/any c such that c 6∈ supp(x) it is the

case that (c a)x = (c b)y.

[a]x = [b]y if and only if b 6∈ supp(x) and (b a)x = y.

The nature of sets in computer science. 26



Why is a model of α-equivalence interesting?

We now have a convenient sets model syntax up to α-conversion.

t ::= a | tt | λa.t can be modelled using pairsets, disjoint sum, . . . and

atoms-abstraction.

A function that generates a new name, like gensym in LISP or malloc in

C, can be modelled using atoms-abstraction.

The nature of sets in computer science. 27


