
Semantic nominal terms

Murdoch J. Gabbay, www.gabbay.org.uk

Sunday 22 March 2009

Joint work with Dominic Mulligan
Thanks to the TAASN organisers

Semantic nominal terms. 1

Semantics nominal terms

There are two distinct ideas in this paper:

1. Semantics for nominal terms unknowns.

2. Reconciling capturing and capture-avoiding substitution.

I’ll motivate each, in turn.

I welcome questions.

Semantic nominal terms. 2

Semantics for nominal terms

I’ll assume you’re familiar with nominal terms’ syntax:

t ::= a | π ·X | [a]X | f(t, . . . , t)

• a is an atom (a level 1/object-level variable).

• X is an unknown (a level 2/meta-level variable).

I don’t like to call X a ‘meta-level variable’ because it’s not. It’s a
variable symbol in nominal terms’ syntax.

Yet, a and X models object- and meta-level variables. For example,
substitution for X captures in [a]X .

([a]X)[X := a] ≡ [a]a models ‘set s to be x in λx.s’.

Semantic nominal terms. 3

Nominal unknowns

So, are nominal unknowns variables? If so, there should be a
valuation ρ mapping them to denotations. Thus:

• In ‘capture-avoiding substitution as a nominal algebra’ and ‘the
lambda-calculus is nominal algebraic’ we prove ω-completeness.
Unknowns map to terms.

• In nominal algebra and nominal equational logic, unknowns map
to elements of nominal sets.

This is standard: ‘[[X]]ρ = ρ(X)’.

Semantic nominal terms. 4

Nominal unknowns semantics

I’ve never been entirely happy with this. Why?

We have a model of α-equivalence given by my thesis, in FM set
theory. Call it ‘nominal abstract syntax’.

Nominal unknowns X have infinite support, in the sense that
π ·X 6≡ X if π is not the identity.

They don’t fit in that model! a maps to a, but there’s no FM set we can
point to and say ‘this is X ’.

Semantic nominal terms. 5

Nominal unknowns semantics

I felt that we were betraying our own model. Having added atoms to
our universe, do we have to introduce another level of variable
(unknowns), that cannot be accommodated in it?

Or can we use our imagination a bit more, and come up with
something else?

Semantic nominal terms. 6

Nominal unknowns semantics

Here’s another question:

Nominal abstract syntax is in some sense the canonical model for raw
syntax up to α-equivalence. What is a canonical model of nominal
terms?

‘Raw syntax’ ⇔ Nominal abstract syntax ∼= Raw syntax/α

Nominal terms ⇔ Functions from valuations to denotational elements?

The creature at the bottom right is the ‘odd one out’.

Semantic nominal terms. 7

I think this is a right answer:

Nominal unknowns correspond with infinite lists of distinct atoms.

Identify X with an infinite list (a, b, c, d, . . .) (fancy name: an
ω-tuple).

Why lists? Why not sets?

One property we want is completeness:

if π 6= π′ then [[π ·X]] 6= [[π′ ·X]].

We also want compositionality: [[π ·X]] = π · [[X]].

π · (a, b, c, d, . . .) = (π(a), π(b), π(c), π(d), . . .).

So we get completeness if we use lists. If we were to use sets, this
would not happen: (a b) · {a, b, c, d, . . .} = {a, b, c, d, . . .}.

Semantic nominal terms. 8

Semantic nominal terms

Why infinite lists?

So that we can recover X from [[π ·X]], for any finitely-supported π.
We examine the ‘asymptotic behaviour’ to derive [[X]].
(a, b, c, d, . . .) and (π(a), π(b), π(c), π(d), . . .) are ‘eventually
the same’, for finitely-supported π.

Another nice feature of using lists is that we have infinitely many lists
with the same support, but not related by a finitely-supported
permutation. Consider

(a, b, c, d, . . .) and (b, a, d, c, . . .).

There is no π such that π · (a, b, c, d, . . .) = (b, a, d, c, . . .). This
lets us model X,Y, Z, . . . as infinitely many semantic nominal
unknowns, with the same support, if we want.

Semantic nominal terms. 9

Atoms-abstraction

Atoms-abstraction works fine. We can define [a](a, b, c, d, . . .) and it
has exactly the right behaviour.

As a nice bonus, not yet fully explored, we can also define [X]t
(abstraction over infinite lists of atoms).

In short, the answer ‘unknowns are infinite lists of distinct atoms’ gives
level 2 variables the right behaviour and puts them in our sets model
shoulder to shoulder with atoms.

Questions?

Semantic nominal terms. 10

Next problem: capture-avoiding vs. capturing substitution

A funny thing happened to me on the way to the conference!

I substituted x to y in λy.x and I got λy′.y.

I instantiated t to y in λy.t and I got λy.y.

Why?

Why does y turn into y′ in one case, and not in the other?

Yes, I know that one of them is capture-avoiding and the other is
capturing. I know it models informal practice! But why? What’s the
underlying structure here?

Semantic nominal terms. 11

Next problem: capture-avoiding vs. capturing substitution

One answer is:

There are two kinds of substitution:

• Capture-avoiding substitution (this is appropriate for level 1
binders interacting with level 1 substitutions).

• Capturing substitution (this is appropriate for level 1 binders
interacting with level 2 substitutions).

See nominal terms, and also ‘hierarchical nominal rewriting’ and ‘the
lambda-context calculus’ which extend this idea to ω many levels.

But now, we have explained level 2 variables as ‘level 1 variables +
infinite lists’. So I’ll propose a different answer.

My answer will also remove the side-condition in nominal terms
‘∆ ` ∇σ’, i.e. ‘the substitution has to respect the freshness context’.

Semantic nominal terms. 12

Permissive nominal terms

Suppose S ⊆ A is a set of atoms. Suppose π is a permutation.

Specify π/S by:

• If a ∈ S then (π/S)(a) = π(a).

• If a 6∈ S and π-1(a) 6∈ S then (π/S)(a) = a.

• If a 6∈ S and π-1(a) ∈ S then (π/S)(a) = an, where an ∈ S
and there exist a1, . . . , an−1 such that π(a) = a1 and ai 6∈ S
and ai+1 = π(ai) for i < n.

Semantic nominal terms. 13

Substitution

Suppose

π = (a b c d e)(f g)

(π maps a to b to c to d to e to a, and f to g to f).

π/{a} = (a b) π/{a, b} = (a b c)

π/{a, c} = (a b c d) π/{a, f} = (a b)(f g).

Note that π|S = (π/S)|S . (-|S is ‘restrict domain to S ’.)

π/S is the permutation such that {a | (π/S)(a) 6= a} is minimal,
such that (π/S)(a) = π(a) for all a ∈ S.

It’s the least permutation agreeing with π on S.

Semantic nominal terms. 14

Substitution

Substitution can be defined by:

aσ = a (π ·X)σ = (π/supp(X)) · σ(X)

f(r1, . . . , rn)σ = f(r1σ, . . . , rnσ)

([a]r)σ = [b](b a) · (rσ) (b#r, b#rσ)

We choose any fresh b (it doesn’t matter).

Actually, this is a small lie, but it’s more convincing than the correct
definition.

Now, you’re all going to demand to see it, right?

Semantic nominal terms. 15

Substitution

Write Orb(X) for {π ·X | all π}; call this the (permutation) orbit of
X .

A substitution is a function from semantic unknowns to terms such
that for each orbit Orb(X) there exists some representative
X ∈ Orb(X) such that σ(π ·X) = (π/supp(X)) · σ(X) for all
π.

σ, σ′, σ′′, . . . will range over substitutions.

Write [X 7→t] for the function mapping π ·X to (π/supp(X)) · t,
and all other Y toY .

Semantic nominal terms. 16

Substitution

Now define a substitution action by:

aσ = a Xσ = σ(X) f(r1, . . . , rn)σ = f(r1σ, . . . , rnσ)

([a]r)σ = [b](b a) · (rσ) (b#r, b#rσ)

Semantic nominal terms. 17

Substitution

A problem with semantic nominal terms is that, if we stick with the
strictly capturing substitution, then we can only admit σ such that
supp(σ(X)) ⊆ supp(X) always. This corresponds with the
condition ‘∆ ` ∇σ’ from nominal terms’ theory.

The capture-avoiding substitution above removes that condition. So
now X represents any term; X can be substituted for any term.

Semantic nominal terms. 18

Substitution

supp(X) represents the namespace of ‘known atoms’, for which
substitution is capturing. A \ supp(X) represents the namespace of
‘atoms generated fresh later’, for which substitution is
capture-avoiding.

If you base nominal rewriting on semantic nominal terms using this
substitution action, then X → X represents any (trivial) rewrite, and
not just rewrites for terms with free atoms in supp(X).

Semantic nominal terms. 19

Some examples

Suppose that a, b ∈ supp(X) and c, d 6∈ supp(X). Then

X[X 7→a] = a

([a]X)[X 7→a] = [b]b = [a]a
([c]X)[X 7→c] = [d]c

([a][c]X)[X 7→(a, c)] = [a][d](a, c).

See how a does not avoid capture, and c does? Remember my
question ‘Why’? Answer: because a ∈ supp(X) and c 6∈ supp(X).

This substitution action can be applied to single atoms rather than
infinite lists. Then, it specialises to capture-avoiding substitution.
Morally, the only ‘capturing’ substitution possible in this case, is
[a := a].

Semantic nominal terms. 20

Conclusions

I have proposed:

• Nominal terms unknowns can be understood as ‘atoms + infinite
lists’.

• Nominal terms style capturing substitution, and first-order syntax
style capture-avoiding substitution, are compatible, and I’ve
shown how to do it.

This all has a simple concrete model in a cumulative hierarchy with
atoms.

Semantic nominal terms. 21

Further work

Explore [X]t — model of ‘α-abstraction by meta-variables’.

Admit lists of atoms with finitely many non-atomic elements. For
example, (a, 2, 3, d, e, f, . . .). Nice model of unknowns with
substitutions.

Use X to model ‘holes’ in things like: incomplete derivations,
manipulating trees with hidden labels, π-calculus contexts, and so on.

Semantic nominal terms. 22

