
Stone duality for first-order logic (a nominal
approach)

Murdoch J. Gabbay

Thanks to École Polytechnique and Dale Miller

December 14, 2011

Stone duality

Boolean algebras are algebras with conjunction and negation
action satisfying certain axioms. The clopens of a topological
space are naturally Boolean algebras, interpreting conjunction as
intersection and negation as complement.

Stone duality expresses that Boolean algebras are dual to Stone
spaces (totally separated compact topological spaces). This
connects logic and topology.

It also gives concrete sets representations for Boolean algebras;
from any Boolean algebra B we form a topological space by
taking:

I points to be maximal filters p ⊆ B and
I open sets generated for each x ∈ B by {p | x ∈ p}.

FOL algebra

I developed a notion of ‘FOL algebra’.

These nominal structures are to first-order logic as Boolean algebra
is to propositional logic.

A FOL algebra is a nominal set equipped with functions on it,
satisfying certain equalities.

A nominal set is a set equipped with names.

If you do category theory, we work in the Schanuel Topos
(pullback-preserving presheaves on the category of finite sets and
injections).

If you do set theory, we work in Fraenkel-Mostowski set theory.

If you don’t know what that means, remember that every element
x comes equipped with a finite supporting set supp(x) of
atoms/names. This is structure that we just assume elements have.

What do we have to do to axiomatise first-order logic?

First-order logic has the following structure:

I A term-language with substitutional structure over itself
r [a:=t].

I Predicates with propositional structure ∧ and ¬ and a
substitution over terms φ[a:=t].

I A universal quantifier ∀x .φ.

So now let’s translate this to nominal algebraic axioms.

Term-language ⇒ termlike σ-algebra

A termlike σ-algebra is a tuple U = (|U|, ·, sub, atm) where:

I (|U|, ·) is a nominal set; we may write this just U;
I an equivariant substitution action sub : U× A× U→ U,

written infix v [a 7→u]; and
I an equivariant injection atm : A→ U, usually written invisibly

(so we write atm(a) just as a),

such that the following equalities hold:

Term-language ⇒ termlike σ-algebra

(Subid) x [a 7→a] = x
(Sub#) a#x ⇒ x [a 7→u] = x
(Subα) b#x ⇒ x [a 7→u] = ((b a)·x)[b 7→u]
(Subσ) a#v ⇒ x [a 7→u][b 7→v] = x [b 7→v][a 7→u[b 7→v]]

Examples

1. The set of atoms A is a termlike σ-algebra where atm(a) = a
and a[a 7→x] = x and b[a 7→x] = b.

2. The set A ∪ {∗} is a termlike σ-algebra where atm(a) = a,
a[a 7→x] = x , b[a 7→x] = b, and ∗[a 7→x] = ∗.

3. First-order syntax generated by the grammar
r ::= a | f(r, . . . , r) for f drawn from some set of function
symbols, is a termlike σ-algebra with atm(a) = a and r [a 7→s]
is equal to r with a replaced by s.

4. Predicates of System F form a termlike σ-algebra, since they
have predicate variables and substitution for predicates.

5. FOL predicates are not a termlike σ-algebra. This is because
there are no predicate variables or substitution for predicates.

FOL algebra

Suppose U = (|U|, ·, sub, atm) is a termlike σ-algebra.

A FOL-algebra over U is a tuple B = (|B|, ·,∧,¬,U, sub, ∀) where
(|B|, ·) is a nonempty nominal set which we may write just B, and
equivariant functions

I conjunction ∧ : B×B→ B written x ∧ y (for ∧(x , y)),
I negation ¬ : B→ B written ¬x ,
I substitution sub : B× A× U→ B, and
I forall ∀ : A×B→ B written ∀a.x (for ∀(a, x)),

such that the following equalities hold:

FOL algebra axioms

(Subid) to (Subσ), and:

(Sub∧) (x ∧ y)[a 7→u] = (x [a 7→u]) ∧ (y [a 7→u])
(Sub¬) (¬x)[a 7→u] = ¬(x [a 7→u])
(Sub∀) b#u ⇒ (∀b.x)[a 7→u] = ∀b.(x [a 7→u])

(Commute) x ∧ y = y ∧ x
(Assoc) (x ∧ y) ∧ z = x ∧ (y ∧ z)
(Huntington) x = ¬(¬x ∧ ¬y) ∧ ¬(¬x ∧ y)

(∀α) b#x ⇒ ∀a.x = ∀b.(b a)·x
(∀E) ∀a.x ≤ x [a 7→u]
(∀∀) ∀a.∀b.x = ∀b.∀a.x
(∀∧) ∀a.(x ∧ y) = (∀a.x) ∧ (∀a.y)
(∀∨) a#y ⇒ ∀a.(x ∨ y) = (∀a.x) ∨ y

Algebra

This is a pure algebraic structure. Just a nominal set with
operations on it.

There are no valuations (similar to cylindric algebras). However,
there is an axiomatised substitution action.

The axiomatisation is finite. Each axiom is a single expression in
nominal algebra—not an infinite axiom-scheme.

The representation theorem

The next step is the duality result. To do this we must map B to
some topological space B•.

Here is a schematic outline of its kernel:

I We need a notion of filter; intuitively this is ‘an up-closed set
that is closed under intersections and does not contain ⊥’.
But now we need to account also for ∀.

I We need to build enough maximal filters (or points). In
particular we need to know that every x ∈ B is contained in
some point.

I We need to prove that there are enough open sets to
discriminate points (our topology is no use if it has e.g. only
two open sets).

Structure of a topology for first-order logic

There will be an underlying set of points P.

There will be sets intersection and sets union on open sets.

The empty set will be open and represent ‘false’. The entire
underlying set of the topology will be open and represent ‘true’.

Universal quantification and existential quantification will be
interpreted as follows:

all a.X =
⋂

u∈|U| X [a 7→u]

exist a.X =
⋃

u∈|U| X [a 7→u]

It remains to decide what “X [a 7→u]” should mean.

The correct notion of filter

Suppose B is a FOL-algebra. A filter is a finitely-supported subset
p ⊆ |B| such that:

1. ⊥ 6∈ p
2. ∀x , y .(x ∈ p ∧ y ∈ p)⇔ (x ∧ y ∈ p).
3. Na.∀x .(x ∈ p ⇒ ∀a.x ∈ p).

The first two conditions are standard. The third condition
accounts for ∀. Nis the new-quantifier meaning ‘for fresh’ or ‘for
all but finitely many’.

There is something strange; the natural condition corresponding to
all would be (∀u∈|U|.x [a 7→u] ∈ p)⇒ ∀a.x ∈ p. Remarkably, this
apparently stronger condition follows from the condition above.

Quick sanity check

Let’s just rehearse what we’re doing.

There’s a map Boolean algebras ⇒ Stone spaces. We take
maximal filters and the natural topology.

We’re pulling the same stunt with FOL. To do this we used a
nominal axiomatisation of FOL; the advantage of this is that we
eliminate valuations and work just with a simple algebraic
structure.

I haven’t shown you any detailed proofs, but I have said what the
correct notion of filter is to make all the proofs work.

Amgis-algebras

Now we need to decide what X [a 7→u] means where X is an open
set.

We give this pointwise meaning:

X [a 7→u] = {p[u←[a] | p ∈ X}

where [u←[a] is an amgis-action, written σ-action.

Filters naturally have an σ-action.

Amgis-algebras

An σ-algebra over U is a tuple P = (|P|, ·, σ,U) of an underlying
nominal set (|P|, ·) which we may write just P, and an amgis-action
σ: |P| × A× |U| → |P| written infix p[u←[a], such that:

(Busid) p[a←[a] = p
(Busσ) a#v ⇒ p[v←[b][u← [a] = p[u[b 7→v]←[a][v←[b]

I It is not necessarily the case that if p is a filter and b#p then
p[u←[a] = ((b a)·p)[u←[b].

I It is not necessarily the case that if a#p then p[u←[a] = p.

σ-algebras are a partial dual to σ-algebras. Points (maximal filters)
have a natural σ-action given by:

p[u← [a] = {x | x [a 7→u] ∈ p}

Back to sigma-algebras

Going in the other direction, from topology on σ-algebra to
σ-algebra (by taking clopens), how do we restore (Subα) and
(Sub#)?

Simplifying slightly, we impose these conditions on the notions of
set that we build out of points. We build a σ-powerset out of
those sets of points that satisfy (Subα) and (Sub#). Then (Subid)

and (Subσ) arise directly from the σ-action on points.

So (Subid) and (Subσ) are ‘pointwise’ axioms, and (Subα) and
(Sub#) are ‘setwise’ axioms.

This was a conceptual barrier that held me up for a while.

Topological conditions

The information I have given you so far suffices to prove a
representation theorem. Every FOL-algebra B can be injected into
the σ-powerset pow(points(B)) of maximal filters of B.

There remains the question of what notion of topological space
corresponds to the images of FOL-algebras.

I will just state the main result:

I Call U ∈ pow(OpensT) ∃-closed when
Na.∀U.(U∈U ⇒ exist a.U∈U) (dual to the third filter axiom).

I Call U ∈ pow(OpensT) a cover when
⋃
U = ||T||.

I Call U a ∃-cover when U is a cover and is ∃-closed.
I Call T ∃-compact when every ∃-cover has a finite subcover.

The duality is between FOL-algebras and totally separated
∃-compact σ-topological spaces.

Conceptual map 1

Predicate Boolean Alg. Usual sem. FO logic Nominal semantics
φ ∧ ψ [[φ]] ∩ [[ψ]] λς.([[φ]]ς ∩ [[ψ]]ς) [[φ]] ∩ [[ψ]]
¬φ U\[[φ]] λς.(U\[[φ]]ς) U\[[φ]]
∀a.φ n/a λς.

⋂
x∈U [[φ]]ς[a:=x]

⋂
x∈U [[φ]][a 7→x]

U is some ‘domain of points’. Boolean algebra does not have a
universal quantification, whence the ‘n/a’. Usual FOL semantics
interprets ∀ using valuations ς; sets structure interacts indirectly
with ∀.

Conceptual map 2

FOL-algebra ⇒ σ-algebra by set of points (max. filters).
FOL-algebra ⇒ σ-topological space by {p | x ∈ p} clopen.
σ-topological space ⇒ FOL-algebra by taking clopens.
σ-algebra ⇒ FOL-algebra (by σ-powersets)

On complexity

Is this complicated?

Well, yes and no.

There are quite a few things stacked on top of each other here.
Let’s look at the conceptual stack:

I Nominal sets.
I Nominal algebras for σ-algebra, FOL-algebra, and σ-algebra.
I The concrete constructions of the duality; notably filters,

σ-algebra action, σ-powerset, ∃-compactness, and ∀-Stone
space.

That’s a lot of stuff. Furthermore, not one of the elements above
is obvious.

It’s ab-so-lutely amazing how it all fits together.

On complexity

When we build the usual FOL semantics using valuations we
assume a bunch of stuff too:

I Sets, so we can take an underlying domain U .
I Higher-order functions, so we can build valuations of type

Vars → U and then semantics of predicates
(Vars → U)→ {⊥,>}.

I Inductively-defined syntax, α-equivalence, capture-avoiding
substitution.

I The Stone duality proof itself; filters, powerset, and Stone
space.

It seems to me that this is no simpler. More familiar, certainly.
But simpler? Probably not.

Back to the high level

Why do this, aside from the fact that we can?

One of my long-term research goals is to argue that we took a
wrong turn with valuations. Valuations make formal that ‘a
variable is something that refers to something in the denotation’
and adds ‘(but is not itself in the denotation)’.

This is a very limited and restricted view. It made sense and was
sufficient once upon a time, but not now.

Computer science is full of structures in which the internal pattern
of references is itself important information. (Think of the
π-calculus.)

So I am trying to argue that variables and their properties are a
special case of referents, and referents are best understood in
terms of denotational, not syntactic, behaviour.

Back to the high level

Now first-order logic is a (the) basic logic of the foundations of
computer science.

(Second-order and higher-order logic are arguably already ‘set
theory in disguise’—unless you do Henkin semantics, in which case
see my recent paper with Dominic Mulligan on ‘nominal Henkin
semantics’ !)

To argue that valuations are just one way, and not necessarily the
best way, of understanding variables, I need to show how the
quantifiable variables of FOL can be approached as ‘nominal atoms
plus extra structure’.

For me, this is the real breakthrough of this paper. For me, it
definitively takes nominal atoms out of syntax and into FOL
semantics.

Future work

Now we know it can be done, we can try to do it again. For
instance:

I λa from the λ-calculus,
I second-order logic, higher-order logic,
I the propositional quantifier

∧
α from System F, and

I generalised quantifiers.

