
On proof theory

Murdoch J. Gabbay and Claus-Peter Wirth

Thanks to Bob Atkey

Feburary 10, 2012

http://www.gabbay.org.uk

On proof search

This talk is introducing a paper with Claus-Peter Wirth on the
semantics of proof-search.

It is not enough to study proof in principle; we may also want to
prove things in practice. This means creating notions of derivation
that are succinct and susceptible to automation. Tableau systems
are designed with this in mind: to be robust, compact, and
efficient.

Tableaux were new to me, so let’s take a look at some tableau
rules.

Formula φ is ⊥, φ ∧ φ, ¬φ, and ∀a.φ. A hypersequent H is
∧∧∧∨∨∨

φi
(conjunction of disjunction).

Tableau rules

(¬¬φ ∨∨∨ Φ) ∧∧∧ H
(α¬¬)

(φ ∨∨∨ Φ) ∧∧∧ H
(> ∨∨∨ Φ) ∧∧∧ H

(α>)
H

(φ ∨∨∨ ¬φ ∨∨∨ Φ) ∧∧∧ H
(αEM)

H

(¬(φ′ ∧ φ) ∨∨∨ Φ) ∧∧∧ H
(α¬∧)

(¬φ′ ∨∨∨ ¬φ ∨∨∨ Φ) ∧∧∧ H

((φ′ ∧ φ) ∨∨∨ Φ) ∧∧∧ H
(β∧)

(φ′ ∨∨∨ Φ) ∧∧∧ (φ ∨∨∨ Φ) ∧∧∧ H

(¬∀a.φ ∨∨∨ Φ) ∧∧∧ H
(γ¬∀)

(¬φ[a 7→r] ∨∨∨ ¬∀a.φ ∨∨∨ Φ) ∧∧∧ H

(∀a.φ ∨∨∨ Φ) ∧∧∧ H (a 6∈ fa(Φ))
(δ−∀)

(φ ∨∨∨ Φ) ∧∧∧ H

Tableau rules

These rules reformulae the usual sequent rules.

(αEM) corresponds to the axiom rule. (γ−¬∀) is ∀-left
introduction. (δ−¬∀) is ∀-right introduction.

It is a fact that these rules can be very inefficient in automation.

A number of so-called liberalised δ-rules have been developed, with
the goal of being more efficient. Here is a list, just to give you a
flavour:

δ+, δ+
+

, δ∗, δ∗
∗
, and δε.

Speedups can be significant. (δ+) allows at least exponential
speedup relative to (δ−) and δ+

+
has another exponential speedup

relative to (δ+).

Liberalised δ-rules

I won’t show you the rules directly. They can be quite complicated.
We’ll see a simple abstraction of them later.

The question I asked with Claus-Peter—who is an authority on
these rules—is what underlying semantic simplicity we could find
that these rules all have in common.

When we see half-a-dozen variations of something, we ask: What
underlying entity are these all variations of?

Semantics too weak

We can’t directly answer this question using standard maths
because the semantics of logic are not rich enough to directly
represent what the liberalised δ-rules do.

We need a richer semantics. We also need a richer syntax.

So I’m going to whip through the syntax and semantics of our new
paper.

Permissive-nominal terms

Fix atoms a and unknowns X . Think of atoms as variables naming
lemmas, and unknowns as variables for proof-search.

Usual sequents (tableau presentation was earlier) do not separate
these two classes.

Every unknown X has a permission set pms(X) which is a set of
atoms. A permutation π is a finite bijection on atoms.

We have types α ::= o | ι | α→ α and terms r ::= a | π·X | f | rr.

Examples of f are ∧, ¬, and ∀. A type system assigns terms to
types in the usual way.

Unknowns

If pms(X) = {a1, . . . , an} then the unknown X behaves like a
Skolemised/raised term fa1 . . . an. Instantiation of X is capturing:

(λa1.X)[X 7→a1] = λa1.a1, like
(λa1, . . . , an.fa1 . . . an)[f 7→λa1, . . . , an.a1] = λa1.a1.

With nominal terms:

I We don’t need higher orders. λa1.X and [X 7→a1] are easier to
work with than λa1, . . . , an.fa1 . . . an and [f 7→λa1, . . . , an.a1].

I Atoms are symmetric. Symmetry is key.

Nominal terms are symmetric whereas Skolem terms can not be.
Functional arguments must occur in order; Skolem terms spread
across many types.

Example: theory of α-equivalence

λa.X = λb.(b a)·X if b 6∈ pms(X).

α-equivalence can be defined as the least congruence such that
a, b 6∈ fa(r) implies (b a)·r =α r .

Nominal sets

A nominal set is a set with a symmetry action on it by
atoms-permutations.

We can use this to interpret logic—including substitution and
universal quantification—in a symmetric abstract domain that
generalises syntax. Name-symmetry in syntax is directly
interpreted in the semantics.

For example nominal sets have a notion of support supp(x) which
generalises ‘free atoms/variables of’. Open predicates and terms
get interpreted as open elements in a nominal set.

Lemma names a are interpreted as nominal atoms.

Nominal sets

An interpretation I is an assignment to each type α of a nominal
set JαKI together with the following data:

1. For each atom a ∈ Aα and constant f : α elements aI ∈ JαKI

and fI ∈ JαKI.
2. For each x ∈ JβKI and a ∈ Aα, an element [a]x ∈ Jα→βKI

such that a 6∈ supp([a]x).
3. For each x ∈ Jα→βKI and y ∈ JαKI, an element x • y ∈ JβKI.
4. A preorder / on JoKI.

Model

Call an interpretation I a model when:

(moda) aI[a 7→x] = x
(mod#) a 6∈ supp(z)⇒ z [a 7→x] = z
(modapp) (z ′ • z)[a 7→x] = (z ′[a 7→x]) • (z [a 7→x])
(mod[]) c 6∈ supp(x)⇒ ([c]z)[a 7→x] = [c](z [a 7→x])
(modid) z [a 7→aI] = z
(modη) a 6∈ supp(z)⇒ [a](z • aI) = z

(Commute) x ∧ y ≈ y ∧ x
(Assoc) (x ∧ y) ∧ z ≈ x ∧ (y ∧ z)
(Huntington) x ≈ ¬(¬x ∧ ¬y) ∧ ¬(¬x ∧ y)

(∀E) ∀a.x / x [a 7→u]
(∀∧) ∀a.(x ∧ y) ≈ (∀a.x) ∧ (∀a.y)
(∀∨) a 6∈ supp(y)⇒ ∀a.(x ∨ y) ≈ (∀a.x) ∨ y

What is important about a model?

The axioms resemble a Hilbert axiomatisation but refer to
semantics, not syntax; to truth-values, not predicates.

In a moment we’ll take advantage of that to interpret liberalised
δ-rules.

In “Stone duality for first-order logic” we build a model of these
axioms that is topological has nothing to do with syntax. This
‘symmetric’ account of logic and computational is not circular: it
has natural models that are not equal to a Lindenbaum algebra.

http://www.gabbay.org.uk/papers.html#stodfo

Semantics

A valuation maps X : α to ζ(X) ∈ JαKI. X is open; the capturing
instantiation of X translates to a possibly open element for ζ(X).
That is, ζ may map atoms in pms(X) to atoms in supp(ζ(X)).

Define JrKIζ ∈ JαKI by:

JaKIζ = aI JfKIζ = fI Jπ·X KIζ = π·ζ(X)
JrsKIζ = JrKIζ • JsKIζ J[a]rKIζ = [a]JrKIζ

We can abstract a in JrKIζ because open r gets translated to open
denotation.

The X are existential since we get to choose ζ.

Liberalised δ-rules: now simple

Call x ∈ JαKI a minimiser for [a]z when [a]z • x ≈ ∀a.z .

So x is an element that tries to make z [a 7→x] false.

Here now is our liberalised δ rule:

(∀a.φ ∨∨∨ Φ) ∧∧∧ H
(δX∀)

X↓[a]φ ∧∧∧ (φ[a 7→X] ∨∨∨ Φ) ∧∧∧ H

The interpretation of X↓[a]φ is ‘ζ(X) minimises JφKIζ ’.

If X minimises JφKIζ then Jφ[a 7→X]KIζ = J∀a.φKIζ .

What has happened?

Nominal terms do the same job as Skolem functions, but add
name-symmetry.

Nominal sets are sets with symmetry. This allows us to give
semantics to logic in which names and binding are directly
translated into the semantics.

Open terms get translated to open elements. Substitution and
quantifiers are translated to semantic maps that satisfy similar
properties, on open elements not necessarily of syntax.

It becomes easy to interpret existential variables as used in
liberalised δ-rules: they map to open elements of a nominal set,
and the maths clicks into place.

Claus-Peter’s original paper is 102 pages long.

Take-home slogans

Nominal terms are syntax with name-symmetry. Nominal sets are a
semantics with name-symmetry.

These symmetries are invisible if you use functions. This is the key
property to give a truly compositional translation of open terms.

To handle open terms and existential variables in proof-search, this
is what you need.

Take-home slogans

The implementors got there first. Nominal terms syntax and
nominal sets semantics put this in a nice, reusable, simple
mathematical box.

Perhaps we can use this simplicity to improve our algorithms; this
is Claus-Peter’s interest.

It’s not just about proof-search. The ‘box’ can be reused. “Stone
duality for first-order logic”; “Nominal Henkin Semantics”; also
“One-and-a-halfth order logic”.

http://www.gabbay.org.uk/papers.html#stodfo
http://www.gabbay.org.uk/papers.html#stodfo
http://www.gabbay.org.uk/papers.html#nomhss
http://www.gabbay.org.uk/papers.html#oneaah-jv

