
Denotation of contextual modal type theory

Murdoch J. Gabbay (joint work with Aleksandar Nanevski)

Thanks to Alan Mycroft

1 July 2013

Modal types

Let’s combine the modal logic S4 with the simple types of the
λ-calculus:

A ::= B | N | A→ A | �A

We can interpret � variously as:

I ‘the interior of’;
I ‘in the future’;
I ‘necessarily’;
I ‘we can justify that’;

and so on.

Modal axioms

Aleksandar had the great idea of interpreting �A as ‘closed syntax
of type A’.

Let’s run through some plausible axioms for this:

Modal axioms

I Axiom T �A→ A.
Given syntax for A, we can compute that syntax to get an
extension in A.

I Axiom 4 �A→ ��A.
Given syntax s for A, form code that generates code for A by
just returning s.

I Axiom K �(A→ B)→ �A→ �B.
Given syntax of a function from A to B, and syntax for A, we
can form syntax for B.

So if we can build a simply-typed λ-calculus with combinators of
these types, and appropriate reductions, then we have converted
modal logic into a meta-programming system.

Modal axioms

Modalities are important in logic, topology, representation theory,
philosophy, and implementation.

For instance, LTL (linear temporal logic) is ‘just’ an extension of
S4 and is the basis of the Sugar specification system used by IBM.

Using an S4 modality to analyse the notion of ‘code of’ makes a
lot of sense.

A social interlude

Me and Aleksandar come from quite similar backgrounds. Even so,
communication was a significant barrier.

Aleksandar was not sensitive to some important distinctions in my
mind, and I was certainly ignorant of many important distinctions
in his mind.

Just because we speak the same language does not mean we speak
the same language!

I find this minefield fascinating and I want to devote a minute to
recalling it. For instance . . .

A social interlude

‘Closed syntax of A’ does not mean ‘code of A’, ‘values of A’,
‘computations of A’, or ‘intension of A’.

I ‘Code of A’ is often understood as compiled (byte)code,
rather than original syntax.

I ‘Values of A’ can be synonymous with ‘normal forms of A’
(syntactic notion) or ‘denotations of A’ (non-syntactic
notion).
Also, mathematicians may silently assume that denotations
can always be silently added to syntax as constants!

I ‘Computation of A’ means . . . whatever you want it to mean.
I ‘Intension of A’ resembles ‘syntax of A’, but need not be

syntactic and sugests that ��A be identical to �A, since
taking an intension twice should reveal no further internal
structure (cf. partial equivalence relations).

A term syntax

Back to the maths. We have a modal type system. Let’s build
terms for it.

Fix sets of constants C , atoms a ∈ A, and unknowns X ∈ X and
define terms by:

r ::= C | a | X@ | λa:A.r | rr | �r | let X=r in r

Constants are just there for things like numbers and addition and
stuff.

The terminology ‘atoms/unknowns’ is from nominal techniques,
but two classes of variables exists independently in the CMTT
literature: also ‘ordinary/modal variables’ and ‘level 1/level 2
variables’ (from Lambda-Context Calculus).

I think we’re going to see a lot more of such languages.

A term syntax

I �r means ‘r as code; do not evaluate this’.
If r : A then �r : �A.

I X@ means ‘unbox X and evaluate the code’.
If X : �A then X@ : A.

Two levels of variables

Note the two levels of variable (cf. nominal terms).

Why two levels?

I λX .�X@ means ‘input syntax X , unbox it, then rebox’ (type
�A→�A; a fancy way of writing the identity).

I λa.�a@ means ‘input a, then throw away this value and
output the syntax “a@”’.

Not the same thing!

We use as to compute. We use X s to move quoted syntax around
without evaluating it.

A variable a can have a modal type �A, but a variable X must
have a modal type.

Jamie, your slides have a mistake

Thank you! There is no λX in the syntax.

λX .�X@ should read λa:�A.let X=a in�X@.

Also λa.�a@ is not syntax at all; you can’t box a free variable (but
see the contextual version).

Just checking if you’re paying attention.

Computer science vs. maths

It’s quite interesting to collect differences between computer
scientists (CS) and mathematicians (Mat)—you might prefer other
tags but the ideas stand:

I A Mat will assume a canonical notion of equality and an
oracle that decides it in constant time. A CS will not assume
equality is computable, and will not even assume a single
canonical notion of equality.

I A Mat will assume that any set can be arbitrarily partitioned
into two halves, and all sets-isomorphic partitions are equal. A
CS will not (e.g. partitions might be uncomputable, such as
‘the set of numbers representing halting programs’, and this is
very different from ‘the set of prime numbers’, itself different
from ‘the set of even numbers’).

I A Mat will assume that if two languages can express the same
functions, then they are equivalent. A CS will not (e.g. the
translation might cost O(n!), or just fail to be compositional).

Computer science vs. maths

I propose one more such split:

I In maths, the only interesting base datatype is numbers. In
CS there is another interesting base datatype: syntax.

Here is another one:

I Mat are typically very interested in symmetry. CS are generally
speaking not as interested in this. More on that tomorrow.

Existing programming languages are, frankly, lousy at programming
on syntax. I think this is because they are descended from designs
by mathematicians circa 1920-1950.

This will have to be fixed. Returning to CMTT, I do not mean to
imply that this is ‘the answer’. However, by studying it we can
better understand what good answers should look like.

Let’s look at some typing rules.

Typing rules

(Hyp)
Γ, a : A ` a : A

(Const)
Γ ` C : type(C)

Γ, a:A ` r : B
(→I)

Γ ` (λa:A.r) : A→ B

Γ ` r ′ : A→ B Γ ` r : A
(→E)

Γ ` r ′r : B

Γ ` r : A (fa(r)=∅)
(�I)

Γ ` �r : �A

Γ,X :�A ` r :B Γ ` s:�A
(�E)

Γ ` let X=s in r : B

(Ext)
Γ,X : �A ` X@ : A

Types

This is a simple and clear presentation of the modal type theory
which underlies the work of Nanevski, Pientka, Pfenning, and
others.

Let’s look at it. Things are mostly bog standard. (�I) introduces
closed syntax �r ; it can still mention X (because these are used to
make holes in code), but it must have no free a. (�E) is just a
let-construct. (Ext) is there to unbox code; so intuitively we have
the reduction

(�r)@ → r .

Semantics

Here are our types again:

A ::= B | N | A→ A | �A

We interpret � as ‘closed syntax’.

How are we to give this a denotational semantics?

We can try this:

JBK = {⊥,>} JNK = {0, 1, 2, . . . }
JA→BK = JAK→JBK J�AK = {�r | ∅ ` r : A}

Modal types are interpreted as sets of closed syntax.

This looks good but it has a serious problem. Let’s see why . . .

Semantics

Look at the semantics which flow from the definition above.

r ::= C | a | X@ | λa:A.r | rr | �r | let X=r in r

Assume valuations ς mapping a to an element of Jtype(a)K and X
to an element of Jtype(X)K.

J>Kς = >
J⊥Kς = ⊥
JaKς = ς(a)

Jλa:A.rKς = (x∈JAK 7→ JrKς[a:=x])

Jr ′rKς = Jr ′Kς JrKς
J�rKς = (�r)ς|X

ς|X is a substitution X 7→ �r where ς(X) = �r . We just take the
valuation ς and apply it to �r as if it were a substitution.

Semantics of X@

The problem is, we need this clause for X@:

JX@Kς = JrK∅ where ς(X) = �r

So the meaning of X@ is ‘unbox ς(X) and calculate the denotation
of that code’. We have no control over the complexity of ς(X).

Our definition is not inductive!

ς(X) can be updated by let X=r in s. Therefore, we cannot
impose bounds on the complexity of ς(X); we can compute syntax
of arbitrary size and just plonk it into ς(X) any time we fancy.

Semantics (revised)

Proposed solution:

JBK = {>,⊥}
JNK = {0, 1, 2, . . . }

JA→BK = JAK→JBK
J�AK = {�r | ∅ ` �r : �A} × JAK

I J�AK is a pair (�r , x) of syntax + a purported denotation.
I There is no restriction that x is actually equal to a denotation

for r .

For instance, (�(1 + 1), 2) ∈ J�NK but also (�(1 + 1), 7) ∈ J�NK.

Key idea: we overgenerate. Overgeneration hard-wires the
semantics with a function J�AK → JAK. Cf. comonads, but note
no function (AA→ B)→ (�A→ �B) unless A and B are already
modal.

Semantics of terms

J>Kς = >
J⊥Kς = ⊥
JaKς = ς(a)

Jλa:A.rKς = (x∈JAK 7→ JrKς[a:=x])

Jr ′rKς = Jr ′Kς JrKς
J�rKς = (�(rς|X)) :: JrKς
JX@Kς = tl(ς(X))

Jlet X=s in rKς = JrKς[X :=JsKς]

JisappAKς(�(r′r′′)) = >
JisappAKς(�(r)) = ⊥ (∀r ′, r ′′.r 6= r ′r ′′)

isapp is an example constant showing we can operate intensionally
on syntax. ς|X is the valuation ς restricted to modal (level 2)
variables.

A small theorem

Theorem. There is no injection from JN→ NK to J�(N→ N)K
that is injective on the first component.

Proof. The set JN→ NK is equal to the function-space N→ N,
which is uncountable. The first component of J�(N→ N)K is
equal to {r | ∅ ` r : �(N→N)}, which is countable.

The contextual system

The more powerful (and complicated) contextual modal type
system looks like this:

A ::= B | N | A→ A | [A1, . . . ,An]A

The semantics are very similar ...

Semantics of contextual types

JoK = {>H,⊥H}
JNK = {0, 1, 2, . . . }

JA→BK = JBKJAK

J[Ai]
n
1AK = {[ai :Ai]

n
1r | ∅`[ai :Ai]

n
1r :[Ai]

n
1A} × JAKΠn

i=1JAi K

Semantics of contextual terms

J>Kς = >H

J⊥Kς = ⊥H

JaKς = ς(a)
Jλa:A.rKς = (x∈JAK 7→ JrKς[a:=x])

Jr ′rKς = Jr ′Kς JrKς
J[ai :Ai]

n
1rKς = [ai :Ai]

n
1(r ςX) ::

(
(xi∈JAiK)n1 7→ JrKς[ai :=xi]

n
1

)
JX@(ri)

n
1Kς = tl(ς(X)) (JriKς)n1

Jlet X=s in rKς = JrKς[X :=JsKς]

JisappAKς([ai:Ai](r′r)) = >H

JisappAKς([ai:Ai](r)) = ⊥H otherwise
JCKς = CH

Conclusions

The problem is giving a semantics to a modal type �A representing
‘syntax of type A’. Our solution rests on the following ideas:

I A type system based on a modality (S4).
I Semantics involving overgeneration, which hard-wires a map

(�A)→ A, though it induces only a relative comonad.
I Two levels of variable a and X , in the style of nominal terms.

Conclusions

The main outstanding problem is to relax box types to permit open
syntax, if we can. So �A behaves a bit like a coproduct of []A,
[A1]A, [A1,A2]A, . . .

This appears to be quite difficult!

Still, I have a number of such calculi under my belt now:

I CMTT semantics.
I The lambda-context calculus.
I Two-level nominal sets.
I (Permissive-)nominal terms and Permissive-nominal logic.
I Hierarchical nominal terms.

These display certain behaviour, and by mixing and matching it
may be possible to construct a calculus to a given specification.

Conclusions

A larger problem, harder to address, is that there is no agreed
canon of standard problems to address in meta-programming.

Logic has standard results like soundness, completeness,
cut-elimination, representation, duality, interpolation, conservative
extension.

Metaprogramming is not as well-organised. It’s not even really a
single problem; it’s more like an amalgamation of various
difficulties.

