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What?

This talk is based on the following thread of research:

I Nominal Semantics for Predicate Logic: Algebras,
Substitution, Quantifiers, and Limits
(15 pages)

I Stone duality for nominal Boolean algebras with New
(15 pages)

I Stone duality for first order logic
(32 pages)

I Semantics out of context: nominal absolute denotations for
first-order logic and computation
(56 pages)

I Representation and duality of the untyped lambda-calculus in
nominal lattice and topological semantics, with a proof of
topological completeness
(86 pages)
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Why?

That’s nearly 200 pages of maths, and it’s dense.

I put effort into the exposition but that can’t make the maths be
something it’s not: it’s tough stuff.

But just knowing that what I have done, can be done, is a useful
message. The details are important but secondary.

(I can drive a car and use Google Maps on my smartphone, though
I don’t know the details.)
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Nominal techniques

Based on nominal sets (advertisment: an excellent recent book by
Pitts, and two survey papers by myself).

Broadly speaking, nominal sets are structures built out of numbers
1, 2, 3, . . . and atoms a, b, c , . . . .

Numbers are totally ordered in a canonical way in a line, whereas
atoms are totally unordered and symmetric up to permutations.

Numbers are like ‘data’; atoms are like ‘pointers’ or ‘abstract
symbols’. We can add numbers, multiply numbers, Gödel encode
with numbers. We can compare atoms for equality ... and that’s it.

(Set theorists: assume we are in Fraenkel–Mostowski sets.
Category theorists: assume we are in the Schanuel Topos.)
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Logic

What is logic? Logic is many things. But at its most elementary,
Logic is an abstraction of powersets.

Given a set X we can form its powerset pset(X ). U ∈ pset(X ) if
and only if U ⊆ X .

This gives Boolean algebra; a bounded distributive complemented
lattice.

So we have:

I ⊥ (emptyset ∅ ∈ pset(X )),
I ∧ (sets intersection ∩ ∈ pset(X )2 → pset(X )), and
I ¬ (sets complement C ∈ pset(X )→ pset(X )).

Every Boolean algebra can be concretely represented in a powerset
(leads on to Stone duality).

5 / 26



Logic

You can do a lot just with Boolean algebra.

Think of propositional logic and SAT solvers.

Boolean algebras are big business and powersets are the canonical
example.
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Motivation map

Our motivation now goes like this:

Step 1. Nominal sets are a semantic foundation for computer
science.

Step 2. First-order logic and the lambda-calculus are
logical/computational foundations for computer science.

Step 3. So build first-order logic and the lambda-calculus in
nominal sets using nominal powersets—just like we built predicate
logic in ordinary sets using ordinary powersets.

Obviously we could replicate the usual constructions familiar from
the ZF/HOL universe (based just on numbers 1, 2, 3, . . . ). But
that does not use the atoms a, b, c , . . . .

We should try to find models of first-order logic (FOL) and the
λ-calculus living already in nominal powersets.
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It’s more complicated than that, of course.

A fuller map is this:

I Powersets (sets of points; good for representing stuff).
I Lattices (these are posets with limits and stuff).
I Topologies (sets of points, subject to conditions on which sets

are ‘good’).
I Algebras (sets and operations subject to equalities).
I Algebraic logic (syntax for specifying algebras).

Boolean algebras (⊥, ∧, ¬) have a logical axiomatisation, a lattice
characterisation, and a topological characterisation, and have
simple canonical models in powersets.

It should be possible to do the same for ∀ and λ, using nominal
algebra and lattices and topologies in nominal (power)sets.
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Existing work is as follows:

I Nominal powersets.
I Lattices (posets with limits and stuff).
I Topologies (‘good’ sets of points).
I Nominal algebra (nominal terms axioms specifying equalities

over nominal sets).

Nominal algebra syntax, logic, models, and theories for FOL and
the λ-calculus were worked out with Maribel Fernandez and Aad
Mathijssen and proved sound and complete.

The 200 pages cited above establish what the corresponding
concrete sets operations, lattices, and topologies look are for ∀ and
λ.

I’ll now give a brief taste of what they look like.
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Start with lattices and limits

Assume a distributive lattice (X,≤,∧,∨) in nominal sets. So in
particular given x , y ∈ X we have a limit

x ∧ y the greatest element in {z | z ≤ x , z ≤ y}.

Now X is a nominal set. So, given x ∈ X assume we have

∀a.x the greatest element in {z | z ≤ x , a#z}.

This is a finite limit, but its universal property is clearly nominal.

∀a.x is the largest element below x for which a is fresh.
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We have leveraged the nominal foundation to characterise
quantifiers as limits.

Surprisingly easy to do.

Obvious questions:

I How does this relate to quantifiers-as-adjoints?
I What are the properties of the (obvious?) nominal category

theory that generalises this notion of limit?

Really good questions, especially for this audience.
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Next: algebra

The axioms are not hard. ∀a.x is characterised by nominal algebra
axioms

∀a.x ≤ x a#y ⇒ ∀a.(x ∨ y) = (∀a.x) ∨ y .

Aad and I wrote these axioms back in 2006.

These are the usual axioms of ‘forall’, captured in the formal
syntax and semantics of nominal terms and nominal algebra.

Aad and I were playing a game of trapping logical specifications in
a formal framework which included an off-the-shelf nominal theory
for handling names.

ZF sets and the languages arising from them are not able to do
this off-the-shelf. Nominal techniques allow the treatment of
names to scale.
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Nominal algebra for substitution

In [capasn 2006,capasn-jv 2008] we specify a nominal algebra for
substitution—σ-algebras:

(σid) x [a 7→a] = x
(σ#) a#x ⇒ x [a 7→u] = x
(σα) b#x ⇒ x [a 7→u] = ((b a)·x)[b 7→u]
(σσ) a#v ⇒ x [a 7→u][b 7→v ] = x [b 7→v ][a 7→u[b 7→v ]]

These axioms usually appear as lemmas: e.g. (σ#) abstracts ‘if
x 6∈ fv(t) then t[s/x ] = t’ is a lemma of syntax, and (σσ)

abstracts the substitution lemma.
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We characterise first-order logic as: a nominal lattice with fresh
finite limits (∧ and ∀) and a monotone σ-algebra structure.

Properties like ∀a.x ≤ x [a 7→u] drop out (want a proof?), so
∀a.x =

∧
u x [a 7→u].

If you take standard models of first-order logic in ZF sets and
translate them in a certain standard manner to nominal sets, then
you find they have infinite limits—not just fresh finite ones.
Valuation models are a strict subset of the nominal ones.

The a#limit characterisation is not equivalent to the infinite limit∧
u x [a 7→u], though in the models they coincide where both exist.

This is because
∧

u x [a 7→u] depends on the size of the set of u,
whereas an a#limit does not and can be managed by creating a
fresh atom a.

Shades here of the (∀L) / (∀R) rules.
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Amgis algebras

Take a σ-algebra X.

Its nominal powerset pset(X) has a useful dual structure of an
σ-algebra (amgis-algebra):

( σid) p[a←[a] = p
( σα) b#p ⇒ p[u←[a] = (b a)·(p[u←[b])
( σσ) a#v ⇒ p[v← [b][u←[a] = p[u[b 7→v ]←[a][v←[b]

This looks like a σ-algebra, but the axioms are dualised.

p[u←[a] = {x ∈ X | x [a 7→u] ∈ p} p ∈ pset(X)

So ( σσ) comes about since x [a 7→u][b 7→v ] ∈ p if and only if
x [b 7→v ][a 7→u[b 7→v ]] ∈ p by (σσ).
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From σto σ

Take powersets again, and you get back to σ-algebras.

Lemma: If X is a σ-algebra, then pset(X) is an σ-algebra. If Y is
an σ-algebra then pset(Y) is a σ-algebra.

Corollary: If X is a σ-algebra then so is pset(pset(X)).
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From σto σ

Making this work is far from obvious. Let me give you just a
flavour of why.

Suppose P is an σ-algebra and X ∈ pset(P).

Here is the definition of the σ-action from the λ-calculus paper:

X [a 7→u] = {p | Nc .p[u← [c] ∈ (c a)·X}

In addition, because of how duality theorems work, we may want P

to be a set with a permutation action instead of a nominal set.

A lot of very careful design goes into these definitions.
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Equality

Suppose X is a σ-algebra. We can interpret u = v in
pset(pset(X )) as

{p ∈ pset(X) | Nc .p[u←[c] = p[v←[c]}.

Nis the new-quantifier meaning ‘for some/any fresh c ’.

Let’s drill down into how this works: Think of p as a maximal
choice of elements of X which we declare to be ‘valid at p’. Then

x ∈ p[u←[c] if and only if x [c 7→u] ∈ p and x ∈ p[v← [c] if
and only if x [c 7→v ] ∈ p.

So (u = v) is the set of points p according to which x [c 7→u] is
valid if and only if x [c 7→v ] is valid, for any x .

(u = v) is the set of points at which u and v are indistinguishable
in any context x .
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Equality

In nominal powersets, we can interpret not just ∀, but also =.

First-order logic with equality.

Foundation for mathematics and computer science.

I still think that’s amazing.
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I have great respect for people studying duality theorems and
λ-calculus semantics.

It’s the negative part that does it: in both λ-calculus and duality
theory, if you strengthen this bit here then you have to weaken
that bit there.

It’s particularly fiddly to get the definitions right so all bits line up.
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Some conclusions

There now exists an account of ∀ and λ as:

I axioms,
I nominal algebras,
I nominal lattices, and
I topological spaces in nominal sets.

We get soundness, completeness, and Stone-type duality results.

We also translate the traditional Tarski and the Herbrand models
to the nominal framework.
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Some conclusions

The resulting classes of models precisely capture the structure of ∀
and λ. For instance, the nominal lattices have fresh finite limits
and that’s exactly what we need, and no more.

The full proofs can be hard and finely-textured—as all such proofs
are: completeness, duality, and models (especially of λ) are usually
thus.

But, it’s worth emphasising that the basic ideas and constructions
are easily visible in pset(pset(X)) for a σ-algebra X.

I hope you will read these papers. If you do, just hold on (as I did)
to what all this stuff actually does on pset(pset(X)).
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More on the λ-calculus, if there’s time

Here’s how to make λ work.

Assume that X has a combination action

◦ : pset(X)× pset(X)→ pset(pset(X)).

Compare: ternary relations on Kripke models, and models of
relevance logic, BI, and linear logic. Contrast: graph models of the
λ-calculus.

Assume that atoms are a subset of X.

The combination action acts pointwise to give a binary application
function on sets of sets pset(pset(X))2 → pset(pset(X)). This has
a right adjoint (•.
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λ-calculus

So given X and Y we can form X•Y and Y(•X , and X•Y ⊆ Z if
and only if X ⊆ Y(•Z .

Then λa.X can be identified with ∀a.(∂a(•X ), where
∂a = {p | a ∈ p}.

β-reduction and η-expansion emerge from the adjoint properties of
• and (•:

I (∂a(•X )•∂a ⊆ X leads to β-reduction, and
I X ⊆ ∂a(•(X•∂a) leads to η-expansion.
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More on filters, if there’s time

Here’s how to make filters work.

A filter in a nominal lattice D is a nonempty subset p ⊆ |D|
(which need not have finite support) such that:

1. ⊥ 6∈ p.
2. If x ∈ p and x ≤ x ′ then x ′ ∈ p.
3. If x ∈ p and x ′ ∈ p then x ∧ x ′ ∈ p.
4. If Nb.(b a)·x ∈ p then ∀a.x ∈ p.

Maximal filters are used to build points, and points are used to
build the topological representation of D.

It’s just pset(pset(D)) but done in such a way that the result is
isomorphic to D.
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Why the nominal models are not just ordinary models, if
there’s time

Tarski-style models of FOL can be converted into corresponding
nominal structures. That is, valuation-based models have natural
nominal and σ-algebra structure.

These models are complete; they have all limits, because the
standard poset of Booleans {⊥,>} is complete and the Tarski
denotation of a predicate φ is a function from valuations to
{⊥,>}.

The nominal models give φ a semantic in a nominal Stone space.
Open and open compact sets are not closed under arbitrary
intersections (i.e. do not have all limits).

They only have fresh-finite limits.

Precise characterisation of FOL.
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